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ABSTRACT

This study presents an approach based on a perturbation technique to construct
global solutions to dynamic stochastic general equilibrium models (DSGE). The
main idea is to expand a solution in a series of powers of a small parameter scaling
the uncertainty in the economy around a solution to the deterministic model, i.e. the
model where the volatility of the shocks vanishes. If a deterministic path is global in
state variables, then so are the constructed solutions to the stochastic model, whereas
these solutions are local in the scaling parameter. Under the assumption that a
deterministic path is already known the higher order terms in the expansion are
obtained recursively by solving linear rational expectations models with time-
varying parameters. The present work proposes a method which rests on backward
recursion for solving this type of models.

Keywords: DSGE, perturbation method, rational expectations models with time-
varying parameters, asset pricing model
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NON-TECHNICAL SUMMARY

DSGE modelling based on perturbation technique is being challenged in the
aftermath of the crisis. Big and persistent shocks and accumulated imbalances may
move an economy far away from a steady state where perturbations around the
steady state are not correct. The initial conditions for the economy (for example, an
economy in transition) may also be far away from the steady state. This has renewed
interest towards global, nonlinear methods. The global methods (projection,
stochastic simulation, etc.) can compute solutions on large domains as opposed to
the perturbation methods. However, the global methods suffer from computational
costs growing fast with the dimensionality of state space. This phenomenon, called
the curse of dimensionality, restricts the application of the projection methods even
to medium-sized models.

This study presents some alternative approach to the conventional global methods,
which in a sense is a generalisation of perturbation around the steady state but is
global. The proposed solutions are represented as a series in powers of a small
parameter o scaling the uncertainty in the economy. The zero order approximation
corresponds to the solution to the deterministic model, because the volatility of
shocks vanishes. Global solutions to deterministic models can be obtained
reasonably fast by effective numerical methods and using well-developed software,
such as Dynare and Troll, that incorporate these algorithms.

Assuming that the deterministic solution is already known, we obtain systems of
higher-order approximations that depend only on quantities of lower orders and
therefore can be solved recursively, and whose linear homogenous parts depend on
the deterministic solution. Consequently, each system can be represented as a
rational expectations model with time-varying parameters. The present work
proposes a method for solving this type of models.

If the parameter o is small enough, the solutions obtained are close to the
deterministic solution. At the same time, whenever the deterministic solution is
global in state variables, so is the approximate solution to the stochastic problem.
For this reason, we shall call this approach semi-global, whereas perturbation
methods based on series expansion around the steady state will be referred to as
local. In contrast to the solutions obtained by local perturbation methods, the
solutions provided by the semi-global method inherit "global” properties, such as
monotonicity and convexity, from the exact solution.

We apply the method to the asset pricing model of Burnside (1998). Since the model
has a closed-form solution, we can check the accuracy of an approximate solution
against the exact one. We compare the accuracy of the second order solution of the
semi-global method with the local Taylor series expansion of order two (Schmitt-
Grohé and Uribe (2004)). The semi-global approach indicates superior performance
in accuracy and inherits global properties from the exact solution.

Lombardo (2010) uses series expansion in powers of o to find approximations to
the exact solution recursively. Borovicka and Hansen (2012) employ Lombardo's
approach to construct shock-exposure and shock-price elasticities, which are asset-
pricing counterparts to impulse response functions. This approach has some
similarity with one employed in the current paper. However, both papers apply the
expansion only around the deterministic steady state; therefore the solution obtained
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remains local. Lombardo’s approach can be treated as a special case of the method
proposed in this study, namely a deterministic solution around which the expansion
is used only in the steady state.
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1. INTRODUCTION

Perturbation methods are the most widely-used approach to solve nonlinear DSGE
models owing to their ability to deal with medium-size and large-size models for
reasonable computational time. Perturbations applied in macroeconomics are used to
expand the exact solution around a deterministic steady state in powers of state
variables and a parameter scaling the uncertainty in the economy. The solutions
based on the Taylor series expansion are intrinsically local, i.e. they are accurate in
some neighbourhood (presumably small) of the deterministic steady state. Out of the
neighbourhood, for example, in the case of sufficiently large shocks (or under the
initial conditions that are far away from the steady state), the approximated solution
can imply explosive dynamics, even if the original system is still stable for the same
shocks (or initial conditions) (Kim et al. (2008) and Den Haan and De Wind (2012)).

This study presents an approach based on a perturbation technique to construct
global solutions to DSGE models. The proposed solutions are represented as a series
in powers of a small parameter o scaling the covariance matrix of the shocks. The
zero order approximation corresponds to the solution to the deterministic model,
because all shocks vanish as o = 0. Global solutions to deterministic models can be
obtained reasonably fast by effective numerical methods® even for large-size models
(Hollinger (2008)). For this reason, the next stages of the method are implemented
assuming that the solution to the deterministic model under the given initial
conditions is known.

Higher-order systems depend only on quantities of lower orders, hence they can be
solved recursively. The homogeneous part of these systems is the same for all orders
and depends on the deterministic solution. Consequently, each system can be
represented as a rational expectation model with time-varying parameters. In the
case of rational expectations models with constant parameters, the stable block of
equations can be isolated and solved forward. This is not possible for models with
time-varying parameters. The present work proposes a method for solving this type
of models. The method starts with finding a finite-horizon solution by using
backward recursion. Next, we prove that under certain conditions, as the horizon
tends to infinity, the finite-horizon solutions approach a limit solution that is
bounded for all positive time.

If the parameter o is small enough, the solutions obtained are close to the
deterministic solution. At the same time, whenever the deterministic solution is
global in state variables, so is the approximate solution to the stochastic problem.
For this reason, we shall call this approach semi-global, whereas perturbation
methods based on the series expansion around the steady state will be referred to as
local. In contrast to solutions obtained by local perturbation methods, the solutions
provided by the semi-global method inherit "global® properties, such as
monotonicity and convexity, from the exact solution and thus cannot explode by
construction.

! The algorithms incorporated in the widely-used software such as Dynare (and less available
Troll) find a stacked-time solution and are based on Newton's method combined with sparse-
matrix techniques (Adjemian et al. (2011)).
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We apply the method to the asset pricing model of Burnside (1998). Since the model
has a closed-form solution, we can check the accuracy of an approximate solution
against the exact one. We compare the accuracy of the second order solution of the
semi-global method with the local Taylor series expansion of order two (Schmitt-
Grohé and Uribe (2004)). The semi-global approach indicates superior performance
in accuracy and inherits global properties from the exact solution.

This paper contributes to the growing literature on using the perturbation technique
for solving DSGE models. The perturbation methodology in economics has been
advanced by Judd and co-authors as in Judd (1998), Gaspar and Judd (1997), Judd
and Guu (1997). Jin and Judd (2002) give a theoretical basis for using perturbation
methods in DSGE modeling; namely, applying the implicit function theorem, they
prove that the perturbed rational expectations solution continuously depends on a
parameter and therefore tends to the deterministic solution as the parameter tends to
zero.

Almost all of the literature is concerned with approximations around the steady state
as in Collard and Juillard (2001), Schmitt-Grohé and Uribe (2004), Kim et al.
(2008), Gomme and Klein (2011). Lombardo (2010) uses series expansion in powers
of o to find approximations to the exact solution recursively. Borovicka and
Hansen (2012) employ Lombardo's approach to construct shock-exposure and
shock-price elasticities, which are asset-pricing counterparts to impulse response
functions. This approach has some similarity with that employed in the current
paper. However, both papers apply the expansion only around the deterministic
steady state, therefore the solution obtained remains local. Lombardo’s approach can
be treated as a special case of the method proposed in this study, namely a
deterministic solution around which the expansion is used is only the steady state.

Judd (1998) outlines how to apply perturbations around the known entire solution,
which is not necessarily the steady state. He considers the simple continuous and
discrete-time stochastic growth models in the dynamic programming framework.
This paper develops a rigorous approach to construct solutions to DSGE models in
general form by using the perturbation method around a global deterministic path.

The rest of the paper is organised as follows. Section 2 presents the model set-up.
Section 3 provides a detailed exposition of series expansions for DSGE models. In
Section 4, we transform the model into a convenient form to deal with. Section 5
presents a method for solving rational expectations models for time-varying
parameters. The proposed method is applied to an asset pricing model in Section 6,
where it is also compared with the local perturbation method in terms of accuracy.
Conclusions are presented in Section 7.
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2. THE MODEL

DSGE models usually have the following form:
Etf(yt+1’yt’Xt+l’Xt’Zt+1’Zt) = 0 (1)’
Zt+l = Azt + O-gt+l’ gt+1 : N (O!Q) (2)

where E, denotes the conditional expectations operator, X, is an n,x1 vector
containing t-period endogenous state variables; y, is an n,x1 vector containing
t-period endogenous variables that are not state variables; z, is an n,x1 vector
containing t-period exogenous state variables; ¢, is the innovations vector; oQ is
n,xn, covariance matrix of innovations; f maps R xR” xR™ xR™ xR"™ xR"

into R xR™ and is assumed to be sufficiently smooth; o (o >0) is a scaling
parameter for the disturbance terms ¢,. We assume that all mixed moments of &,
are finite. All eigenvalues of the matrix A have modulus less than one.

The solution to (1) and (2) is

Yi = h(x. 2,) ©)

where h maps R™ xR" into R" . Another way of stating the problem to solve is
to say: for a given initial condition (X,,z,) find the initial condition Yy, such that the

solution (X,,Y,) to (1) and (2) will be bounded forall t >0.
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3. SERIES EXPANSION

In this section, we shall follow the perturbation methodology (see, for example,
Holmes (2013)) to derive an approximate solution to the model (1) and (2). For
small o, we assume that the solution has the following particular form of

expansions:
Yo =2 0"y (%, 2) (@),
n=0
X, = Za”xt(”) (5)
n=0

where y™ (x,,z,) and x™, n=0,1,2,..., are the n-order of approximation to the
solution (3) and the variable X, respectively. The exogenous process z, can also be
easily represented in the form of expansion in o :

2, =29 + ozl (6).
Indeed, plugging (6) into (2) gives
2,1 = 2y +oziy = Az + oz) + oy
Collecting the terms of like powers of o and equating them to zero, we get
20 = AZ? (),
28y = A + &, (8).

Since the expansion (6) must be valid for all o at the initial time t = 0, the initial
conditions are

2P =z,and 2" =0 (9).

Note that the arguments of functions y® are expansions in powers of o.
Substituting the expansions (5) and (6) into (4) yields

Y, =20 y“’{Zﬁ"Xf” 20+ cfzt“)] (10).
i=0 =0

Expanding Yy, for small o and collecting the terms of like powers, we obtain

y, = Zany*(”)(xfo), Xt(1)7"'1 Xt(n)’ Zfo), Zt(l)) (11)

n=0

where

yOx?,20) = yO (x?,2),
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“0) (0 @D 50 ,0) = O[O -0 © O, O 5O
YOO X2 2 ) = YT )+ Yo X+ YoreZe s

,0;t 0,1;t
and
*0) (y©0) () M 50 ;@Y = 00 50 ©) (n)
y (Xt ’Xt ""’Xt ’Zt ’Zt )_y (Xt ’Zt )+y1,0;txt +pn,t (12)

where the mapping p,, = p,(xX?,x®,...,x",29,28) has arguments with
superscript less than n and is defined as

SER S Y n—j=1 i 6 G (o)
Pne = ZFZ Z Eylg,Jl);t Z (— POLD AL 1(Zt(1))
=0 = j=0 k=1 B iy +ig 4oy =n— - V) PR 18
Here .}, denotes the mixed partial derivative of y of order k and | with
respect to X, and z, respectively at the point (x®,z®), and (z®) = (z®,...,z)

t
(I times). In other words, Y, is a (k+1)-multilinear mapping (see, for example,

Abraham et al. (2001; p. 55)) depending on (x,z®) (and hence on t).
Substituting (12) into (11), we can rewrite the latter as

Yo = Yo" [y (x®,20) + yOx + p,. ] (13).
n=0

Then substituting (5), (6) and (13) into (1), collecting the terms of like powers of &
and setting their coefficients to zero, we have

Coefficient of o

0 0 0 0 0 0 0 (9) 0 0
Fy® o222,y (6, 22) x%, X, 29,20 )= 0 (14).

The requirement that (5) and (6) must hold for all arbitrary small o implies that the
initial conditions for (14) are

20 =z, and xP =x, (15).

The terminal condition is the steady state. The system of equations (7) and (14) is a
deterministic model since it corresponds to the model (1) and (2) where all shocks
vanish. The deterministic model defined by equations (7) and (14) with the initial
conditions (15) can be solved globally by a number of effective algorithms, for
example, the extended path method (Fair and Taylor (1983)) or a Newton-like
method (for example, Juillard (1996)). As this study is primarily concerned with

stochastic models, in what follows we suppose that the solution (x, y@ (x?,z?))
for t > 0 to the deterministic model is already known.

Coefficient of ", n>0

(n) (n) (0) (n)
Et{fl,t+l Y t f2,t+1 Yo't [fl,t+1 “Yigra T f3,t+1 ]Xt+l

n n (16)
+ [fZ,t+1 : yl(,%);t + f4,t+1 ]Xt( e 771(+1) =0
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where y™ = y™(x©? 2?). The requirement that (5) must hold for all arbitrary
small o implies that the initial condition for equation (16) is

xM=0 (17).
The matrices

- 0) (©) (0 0) () (0 0 O 50 50 ]); =
fi,t+1_ fi(y (Xt+1’zt+l)’y (Xt 'Zt )’Xt+1'Xt 'Zt+1'Zt ),I—l,...,6,

are the Jacobian matrices of mapping f with respectto y,,, Y, X.1» X, Z.,,and
Z, respectively at point

0 (O 50y 0 (O 50y 0 O 50 ()
(y (Xt+1’zt+l)'y (Xt 14y )’Xt+l’xt 1 L1 4y )

The mapping E,;7" takes the following form:

(n) — M) (y© () (-1 (1) 50 L0 1) 50
Enii = Em (Xt+11Xt e X X0 g Ly 2 4 )
where 7™ is some mapping for which the set of arguments includes only quantities

of order less than n. The vector z\) enters expectations E,;7") in the form of mixed

moments of order n or less. The subscript t + 1 in f; ., and 7" reflects their

dependence on t + 1 through x% and z%).

The expectations E,7,") is bounded if all mixed moments of z{} are bounded up to

+1
order n and vectors

( ©) y‘°) x©
t )

© (-1) (-D) (D) (D) L0 L0 L0 5O
t+11 t+l7Xt ! ’Xt 7Z Zt ’Z Zt )

ceer Jt+l v Ut U £ t+1? t+1?
are bounded forall t>0.

Equation (16) with the initial condition (17) is a linear rational expectations model
with time-varying coefficients. To solve the problem (16) and (17) is equivalent to

finding a bounded solution (x™,y™) for t>0 under the assumption that the

bounded solutions to problems of all orders less than n are already known. It is
worth noting that the homogeneous part of (16) is the same for all n>0 and the

difference is only in the non-homogeneous terms E,;7{") . In Section 5, we present a

method for solving such types of model and prove the convergence of the solutions
implied by the method to the exact solution. In the next section, we transform
equation (16) in a more convenient form to deal with.
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4. TRANSFORMATION OF THE MODEL

We define the deterministic steady state as vectors (Y, X,0) :
f(y,V¥,X,%,00)=0 (18).

We can represent f;., in equation (16) as f; ., = f, + fI w 1=1,...,6, where
f, = f,(Y,¥,X,X,0,0) are the Jacobian matrices of the mapping f with respect to
Ve Yoo Xeqs X Zy,y, and z, respectively at the steady state, and

A

fion = fioa V0 YO X0 X2, 29, 2) - £.(¥, 7, %, %,0,0) (19).

Note also that fI w1 —> 0 as t — oo, because a deterministic solution must tend to the
deterministic steady state as t tends to infinity. Consequently, f, ., can be thought

of as a perturbation of f.. To shorten notation, further on superscript (n) is omitted
when no confusion can arise. Equation (16) can be written in the vector form:

q)t+1E{XHl:| = At+l|:§[:|+ Ene (20)

t+1 t

where ©®, = [fs + fAsvt, f+ fMJ and A, = [f4 + f4’t, f, + fz’tJ. It is assumed that the
matrices @, are invertible for all t>0. This assumption holds if, for example, the
Jacobian [f,, f,|" at the steady state is invertible? and terms fALt and fA&t are small

enough for all t > 0. Pre-multiplying (20) by d)m, we get

Xt+l Xt Xt -1
L +M,, +®.,En,. (21)
{ytj {yj 1{%} B

where L =[f,, f,]*[f,, f,] and

My = [f + f3t+l' lt+l} [f + f4t+1' 2t+l] [fsif [fmf ]

Notice that lim,_,_M, =0. As in the case of rational expectations models with

t—oowo
constant parameters it is convenient to transform system (21) using the spectral
property of L. Namely, the matrix L is transformed into a block-diagonal one
using the block-diagonal Schur factorisation®

2 This assumption is made for ease of exposition. If [f3. fl] is a singular matrix, then further on

we must use a generalised Schur decomposition for which derivations remain valid, but become
more complicated.
® The function bdschur of Matlab Control System Toolbox performs this factorisation.
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L=2zPz™ (22)
where
A O
p= 0 B (23)

where A and B are quasi upper-triangular matrices with eigenvalues larger and
smaller than one (in modulus) respectively and Z is invertible matrix*. We also
impose the conventional Blanchard—Kahn condition (Blanchard and Kahn (1980))

on the dimension of the unstable subspace, i.e. dim(B) =n, .
After introducing the auxiliary variables
[s,u] = Z7 %, v (24)
and pre-multiplying the system (21) by Z, we obtain
EiSuy = AS, + Q1S + QU + Wi By (25),
B, = BU +Qyy 18 +Qyp iUy + Vo s By (26)

where [q]l,m’lpz,m] = Zq):l and

Q21,t+l Q22,t+1

The system of equations (25) and (26) is a linear rational expectations model with
time-varying parameters, hence we cannot apply the approaches used in the case of
models with constant parameters (Blanchard and Kahn (1980), Anderson and Moore
(1985), Sims (2001), Uhlig (1999), etc.). In Subsection 5.2, we develop a method for
solving this type of models.

|:Q11't+1 le,t+l:| - ZMt+lz—1 (27)

* A simple generalised Schur factorisation is also possible to be employed here but at the cost of
more complicated derivations.
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5. SOLVING THE RATIONAL EXPECTATIONS MODEL WITH TIME-VARYING
PARAMETERS

5.1 Notation

This Subsection introduces some notation that will be necessary further on. By |-|

we denote the Euclidean norm in R". The induced norm for a real matrix D is
defined by

|D]| = sup| Ds]|.

|s|=1
Matrix Z in (22) can be chosen in such a way that
|A|<a+y<1and “B’1H<ﬂ+7/<1 (28)

where a and £ are the largest eigenvalues (in modulus) of the matrices A and

B! respectively, and y is arbitrarily small. This follows from the same arguments
as in Hartmann (1982; 81V 9) where it is done for the Jordan matrix decomposition.
Note also that HB*H <1 for sufficiently small » . Let

B,=B+Q,, and A = A+Q,;, (29).

By definition, put

a=sup [A], b= sup HB{lu (30),
t=0,1,... t=0,1,...
c= sup Q. d= sup Q] (31).
t=0,1,... t=0,1,...
Further on, we assume that all the matrices B,, t=0,1,..., are invertible. The

numbers a, b, ¢ and d depend on initial conditions (x{,z"). From the
definitions of A, A, B,, B, Q,, and Q,,, and condition lim,_,_(x?,z?) = (X,0)
it follows that

limc(x?,z?) =0, lim d(x?,z”) =0 (32).

t—ow
lima(”,2?) =[] <1, limb(”,z) =B <1.
t—o to
This means that ¢ and d can be arbitrary small and
a<l and b<l1 (33)

by choosing (x{”, z{?) close enough to the steady state.
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5.2 Solving transformed system (25)-(26)

Taking into account notation (29), we can rewrite (25)—(26) in the following form:
Etst+l = At+lst +Q12,t+1ut + \Pl,t+l Etnt+l (34)’
Etut+1 = Bt+lut + QZl,t+1St + \PZ,t+1Et77t+l (35)

In this Subsection, we construct a bounded solution to the system (34)—(35) for

t >0 with an arbitrary initial condition s, eR™ and find under which conditions
this solution exists. For this purpose, we first start with solving a finite-horizon
model with a fixed terminal condition using backward recursion. Then, we prove the
convergence of the obtained finite-horizon solutions to a bounded infinite-horizon
one as the terminal time T tends to infinity.

Fix a horizon T >0. Using the invertibility of B;, and solving equation (35)
backward, we can obtain u; as a linear function of s;, the terminal condition

E;u;., and the "exogenous" term ¥, E;7; .,

— -1 -1 -1
Up =— BT+1Q21,T asSr — BT +1IP2,T +1 ET Mat BT+1 ET Ur g

Proceeding further with backward recursion, we shall obtain finite-horizon solutions
for each t=0,1,2,...,T. For doing this, we need to define the following recurrent

sequence of matrices:
KT,T—i—l = L;1+1,T—i (QZl,T—i + KT,T—iATfi )' i= 0’1’ ""T (36)
where

Lt =B+ Ko Qg 37),

with the terminal condition K; 1., = 0. In equations (36) and (37), the first subscript

T defines time horizon, while the second subscript defines all times between 0 and
T+1.Letur;,;,1=0,1,...,T, denote (T —i)-time solution obtained by backward

recursion that starts at time T .
Proposition 5.1

Suppose that the sequence of matrices (36) and (37) exists; then the solution to the
system (34)—(35) has the following representation:

i+1

Ur g = =Ky r S+ 0 +(HLT1,Ti+kJETi(uT+1) (38)
k=1
where 1 =0,1,...,T; and
i+1 ]

9ri = _ZHL#T—M (\PZ,T—H—j + KT,T—i+j\Pl,T—i+j)ET—inT—i+j (39).

=1 k=1
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For the proof, see Appendix A. The sequence of matrices (36) exists if all matrices
L, 1=01,...,T, are invertible. For this we need, in addition, some

boundedness condition on the matrices B, K, T-inQuari-

Proposition 5.2
If for a, b, ¢ and d from (30)—(31) the inequality

2 2
cd <%(%—aj = (1_2§bJ (40)
holds, then
1B K ria] | Qur | <1, i=0,1,2,...T (41).

For the proof, see Appendix A.
Proposition 5.3

If inequality (41) holds, then matrices L; ;;, 1=0,1,2,.., T, are invertible.
Proof. From equation (37) and the invertibility of B, _; it follows that
Lrsi = BT—i(I +B, KT,T—inZ,T—i) (42).

Matrices L;._; are invertible if and only if matrices (I +B KTVHQH’H) are
invertible. From the norm property and (41) we have

H B{Eu K+ T —i+lQ12,T - H < H BTi- H ) H Ky T HQlZ!T—i H <1

The invertibility of (I +B KT,T_iQm_i) now follows from Golub and Van Loan
(1996; Lemma 2.3.3).

For i =T from equation (38) we have

T+1

UT,o = _KT,OSO + gT,T + [HLTl,k on (UT+1) (43)-
k=1

This is a finite-horizon solution to the rational expectations model with time-varying
coefficients (34)—(35) and with a given initial condition s;. It remains to show that

the solution u; , of form (43) converges to some limitas T — oo.
Proposition 5.4
If inequality (40) holds, then the limit

limK;; =K, for j=0,1,2,...

T oo

exists in the matrix space defined in Subsection 5.1.
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For the proof, see Appendix A.
Proposition 5.5
If inequality (41) holds, then

T+1

lim[ [ =0 (44)
T—>w K=1

and
T"m Orr =0 (45)

. . n
where g_ is some vectorin R’ .

Proof. From (37) and Proposition 5.4 it follows that
lim LT,k =B+ Kco,leZ,k = Loo,k'

T

Then the limit in (44) can be represented as

T+1 T+1

lim [ [ = 1im [ L (46).
T > k=1 T > k=1
Since K, is bounded (it follows from formula (76) in Appendix A) and
lim Qp =0, mdlmBﬁ:Hﬂ
we have Iim,HwL;ik =B™. Therefore, if §>0 is arbitrary small, there is an
N =N, €N such that
|| <p+6=p<1 (47)

for k > N, where £ is the largest eigenvalue (in modulus) of the matrix B™. From
this, the norm property and (46) we obtain

T+1

-1
[ L
k=1

where C, is some constant. Hence (44) is proved.

T+1
. . -1 . T-K —
lim < lim HH"@*H <limCp ™ =0
T—w Tow ) h T

By inequality (47) the factors in (39) decay exponentially with the factor p as
J = co. From this and the boundedness of terms K, , ‘¥,,, ¥, and Ey7,, T eN
and k =1,2,...,T +1, it follows that the series
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T+1

Orr = _ZHL#k (¥ + Ke ¥ ) Boy

j=1k=1
converges to some g, as T — oo,

From Propositions 5.4 and 5.5 it may be concluded that, as T tends to infinity,
equation (43) takes the following form:

Uy ==K S+ 0., (48).

Formula (48) provides a unique bounded solution to the transformed rational
expectation model with time-varying parameters (34)—(35). Note also that the proofs
of Propositions 5.2-5.5 are based on inequality (40) that is a spectral gap condition
for unstable and stable parts of system (34)—(35), and in a sense substitutes for the
Blanchard-Kahn condition for rational expectations models with time-varying
parameters. It follows from (30)-(33) that inequality (40) always holds if initial

conditions (x,z®) are close enough to the steady state. Nonetheless, condition
(40) is not local by itself.

5.3 Restoring original variables x” and y"

Recall that we deal with the n-order problem (16)-(17), and now we put the
superscript (n) back into notation. To find the bounded solution in terms of the
original variables x and y{", we need to obtain the initial values u{” and s{”

that correspond to those of problem (21), i.e. x{" = 0. From (24) and (48) we get

S - 0
—KOs 490 |7 [y

where Z " is a matrix that is involved in the block-diagonal Schur factorisation (22)
and has the following block-decomposition:

e le ZlZ
Z°= 72 Zzz'

s =zZ%y{ (49),

Hence

—Kose” +9.7 = 2%y (50).

Substituting (49) into (50) and assuming that the matrix Z* + K{"Z* is invertible,
we get

0

y(()n) = (22 + KS())ZlZ)_lg(") (51).
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The left-hand side of (51) corresponds to y(")(xo,zo) in (4). The dependence of

s on (%,,2,) follows from the terms K and g‘". Therefore, formula (51)

determines the solution to the original rational expectations model with time-varying
parameters (16) and with the initial condition X{” = 0. The matrix (Z% +K_ ,Z%)

is invertible, if (i) matrix Z% is square and invertible, and (ii) the norm of matrix
K. is small enough. Condition (i) corresponds to Proposition 1 of Blanchard and
Kahn (1980); at the same time, condition (ii) can always be attained if initial
conditions (x,z?) are close enough to the steady state, which follows from (75)

and (76) of Appendix A. These conditions are not local by themselves.

By assumption, the solutions of lower order are already computed, thus the policy
function approximation is of the following form®

Y, =20y (x,2).
i=0

If we are interested in finding the solution to the system (1)—(2) (for example,

impulse response functions); then for each n, knowing y{” and using the

transformations (49)-(51) we can recover initial conditions (s{”,ul™), solve

equations (34)—(35) with these initial conditions, and finally obtain the solution to
the system (21), using the transformation Z . This provides the solution to (21) in
the following form:

(n) — (n) (n)
Xt _leSt +leut ,

(n) — (n) (n)
yt - Z21St + Zzzut

where Z., 1=1,2, j=1,2, are blocks of the block-decomposition of the matrix Z.

ij?

*In fact, it is not hard to prove that in the case of symmetric distribution of &, for all odd N the

unigue bounded solution is Xt(n) =0 and yt(“) = 0. We will show this for a simple asset pricing

model in Section 6 fori =1.
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6. ASSET PRICING MODEL

In this Section, we apply the presented method to a nonlinear asset pricing model
proposed by Burnside (1998) and analysed by Collard and Juillard (2001). The
representative agent maximises the lifetime utility function

) CQ
max(EOZ,Bt —‘J
= 0
subject to
p.e., +C, = p.e +d.e
where >0 is a subjective discount factor, <1 and 6=0, C, denotes

consumption, p, is the price at date t of a unit of the asset, e, represents units of a

single asset held at the beginning of period t, and d, is dividends per asset in period
t. The growth of rate of dividends follows an AR(1) process

X, =(1-p) X+ pX 4 +0&, (52)

where x, =In(d,/d, ;) and &, ~ NIID(0,1). The first order condition and market
clearing yields the equilibrium condition

yt = ﬂEt [exp(@(nl)(l-l_ yt+l )] (53)

where y, = p,/d, is the price-dividend ratio. This equation has an exact solution of
the following form (Burnside (1998)):

0

y, = D B expla; +b; (x, — X)] (54)
where
ai:@ml( b0 j {i_Zp(l—pi)+p2(l—/2)2i)} (55)
2\1-p 1-p 1-p
and
bi - Hp(l_pl)
1-p

It follows from (53) that the deterministic steady state of the economy is

Bexp(ex)

y= 1- Bexp(X)




SEMI-GLOBAL SOLUTIONS TO DSGE MODELS: PERTURBATION AROUND A DETERMINISTIC PATH

6.1 Solution

We now obtain a solution to the system (52)—(53) as an expansion in powers of the
parameter ¢ using the second-order approximation method developed in Sections
3-5. Specifically, we are seeking for the solution of the form:

Y, = YO (x)+ oy (x)+o’y?(x,) (56),
X, = X2 +ox (57).

Substituting (57) into (52) and collecting the terms containing ¢° and o', we
obtain representation (57) for X,

X% = (1= p) X+ px° (58),
X = % + g, (59).

Since expansion (57) must be valid for all o at the initial time t =0, the initial
conditions are

xP=x, and x{’=0 (60).
Substituting (56) and (57) into (53), then collecting the terms of like powers of o
and setting the coefficients of like powers of o to zero, we obtain (for details see
Appendix B):

coefficient of &

v = pexp()(1+ v (62),

X = PX (62),

coefficient of o

0) 4 (1) 1 =
yl;t Xt + yt -

(63),
+exp(Ok%) BE, [ (1+ yO) + v, x, + v ]
X = PR+
coefficient of o
1 2
e N (x®)
1 2
+ Blo" sy )+ 2600+ v Jexp(@)E, () (64)
+ Bexp(E, [y + x (v, + )+ E. (v )]
where Y}, i=0,1,j=1,2, are derivatives of y© of order j at point x. For

simplicity of notation, we write y" instead of y’(x®), i=0,1,2.
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The system (61)—(62) is a deterministic model. Its solution can be obtained by taking
o =0 in (54) and (55)

y©O => B exp G{Yi +M(xt - Y)} (65).
i=1 1-p
For the first order approximation we can rewrite (63) as
YOO +y® = Bexp(@)|oa+ y&) + v ExXE
+ B exp(x))E,Yia

Under the assumption that y® and x{® are known for t >0, equations (66) and
1) —

(66).

(59) constitute a forward looking model. Since X;

E,x"” =0 for t>0. It is easily shown that the only bounded solution of (66) is

y® =0 for t>0.

=0, from (59) we have

Equation (64) is a linear forward-looking equation with time varying deterministic
coefficients. This equation can be solved by the backward recursion considered in

Section 5. Taking into account that the initial value of X is zero, it can be easily
checked that the solution of (64) has the form

o0

1
WO =5 2 eXPIOO %+ X [6° (L i)
+26y© 1-E,(x®)?

1;t+n t+n

(67).

Here y,%., can be obtained by differentiating (54) with respect to X, and is given by

yl(?_Zﬂ p(1 p)exp{ {XHP( —,0)(t 2)}}

-p 1-p

From the specification (59) and initial conditions (60), we get the moving-average

representation for x) :

1 = n-1
X = & + PErina +.+tp €1

t+n

Since the sequence of innovations ¢,, t > 0 is independent, it follows that

? o ?
E, (Xt(i)n) = E, (gt+n tPE TP 125t+1)
2(n-1) — 1-p~ (68).
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From (58), we obtain

) 4+ x O

t+n

=X+ p(x? -X)+ X+ p* (x? - %)
p(1-p") (xO —x) (69).
1

(0) ©
Xt+1 + Xt+

+X+p"(x? —=X) = nx +

Finally, inserting (68) and (69) into (67) gives

02 © ] 1_ 2n _ 1_ n _
y@ = 7Zﬂ ﬁexp{@[nx + ep(l—/’f)(xt(o) - X)]}[e2 A+yO)+2002,, ]
n=1 - -

To summarise, we find the policy function approximation in the following form:
y(x) =y (x) + 0y ().

The solutions for higher orders y{’(x), i>2 can be obtained in much the same
way as for yt‘z)(x). Note also that it is easily shown that for all odd i the unique

bounded solution is y” =0.

6.2 Accuracy check

This Subsection compares the accuracy of the second order of the presented method
with the local Taylor series expansions of order 2 (Schmitt-Grohe and Uribe (2004)).
The following three criteria are used to check the accuracy of the approximation

methods:
e, 100m{w}
’ i y(x)
e AV () = AT (%)
E,. =100 miax{ AY(X) ‘},

E,,. =100- max ﬂAz y()ZZ)y_(fz)y(Xl )G

where y(x;) denotes the closed-form solution, Yy(x,) is an approximation of the
true solution by the method under study, Ay(x)=Yy(x)-Yy(x —Ax) and
AX =X, —X_, are the first difference of y and X respectively, Azy(xi) is the
second difference of y, i.e. A’y(X)=Ay(X)—Ay(X_,). The criterion E, is the

maximal relative error made using an approximation rather than the true solution.
The criteria E;, and E,_ capture the accuracy of characteristics of the shape of an

approximate policy function, namely the slope and convexity, by comparing the
maximal relative first and second differences of the approximate and closed-form
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Table 1

solutions. All criteria are evaluated over the interval x, e[X—A-0,,X+A-0,],

where o, is the unconditional volatility of process x, and A=5. The

parameterisation follows Collard and Juillard (2001) where the benchmark
parameterisation is chosen as in Mehra and Prescott (1985). We therefore set the
mean of the rate of growth of dividend to X =0.0179, its persistence to

p =-0.139, and the volatility of innovations to o = 0.0348. The parameter & was
setto —1.5 and S to 0.95. We investigate the implications of larger curvature of

the utility function, higher volatility and more persistence in the rate of growth of
dividends in terms of accuracy.

Table 1 shows that the maximal relative error for the benchmark parameterisation is
three times larger for the approximation of the Taylor series expansion than for the
semi-global method; however, the errors for both these methods are very small —
0.06% and 0.02% respectively. The increase in the conditional volatility of the rate
of growth of dividends to o = 0.1 yields higher approximation errors of 2% and
1% for the local Taylor series expansion and semi-global method respectively.
Increasing the curvature of the utility function to @ =-10 yields the maximal
approximation error of 8.4% for the Taylor series expansion approximation and
about two times smaller one for the semi-global method.

Relative errors of approximate solutions

(%)

Criterion E,.. E.. E,.

Model SG* | P2 | SG P2 SG P2

Parameterisation
Benchmark 0.02 0.06 0.02 1.47 0.02 4.53
6=-10 4.75 839 | 4.66 25.0 | 4.56 37.6
c=01 1.30 2.23 1.29 12.0 1.28 19.3
0 =050=0.03 0.26 1.56 0.28 8.72 0.30 26.6
p=0560=-5 10.3 27.8 11.0 69.4 11.6 713
p=0.9 9.30 193 11.3 392 12.8 360

The semi-global method of order two;
®the local Taylor series perturbation method of order two (Schmitt-Grohé and Uribe (2004)).

The semi-global method becomes considerably more accurate than the local Taylor
series expansion if the persistence of the exogenous process increases. For
parameterisation p =0.5 and o =0.03, the proposed method gives the maximal
relative approximation error 6 times smaller than for the local Taylor series
expansion. Increasing the persistence to p =0.9 yields the maximal relative
approximation error of 193% for the local Taylor series expansion and 9% for the
semi-global method. This effect is more pronounced for the criteria E,, and E, .

24
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Furthermore, for any parameterisation the semi-global approximation gives at least 5
times more accurate solution in the metrics E, , and 9 times in the metrics E, , than

the local Taylor series expansion.

Figure 1
Comparison of policy functions for p =0.9
90 0 90
80 80
70 70
60 60
.50 RS 50
> o,
40 2
30 ’~::¢0:%\ 30
local 20 \ 20
------ exact 10 o ——————————————————+ 10
...... semi-global 0 — W 0
-02 -0.15 -0.1 -0.05 0 0.05 0.1 015 -02 02 025 0.3
X,

Figure 1 shows the policy functions for a high persistence case, o =0.9, and

indicates that the semi-global method traces globally the pattern of the true policy
function much better than the local Taylor series expansion. Moreover, from Figure
1 we can also see another undesirable property of the the local Taylor series
expansion, namely this method can provide impulse response functions with a

wrong sign. Indeed, the steady state value of Y, is Y =12.3. After a positive shock,

the true impulse response function is negative, whereas the impulse response
function implied by the local perturbation method is positive, if the shock is large
enough. Note also that the solution produced by the semi-global method is
indistinguishable from the true solution for positive shocks (the bottom right corner
of Figure 1).
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CONCLUSIONS

This study proposes a method based on perturbation around a deterministic path for
constructing approximate solutions to DSGE models. The solutions obtained are
global in the state space whenever so is the deterministic solution. As by product, an
approach to solve linear rational expectations models with deterministic time-
varying parameters is developed. All results are obtained for DSGE models in
general form and proved rigorously.

The advantage of using the local perturbation methods lies in the fact that they can
deal with medium-size and large-size models for reasonable computational time.
However, these methods are intrinsically local as they employ perturbations around
the steady state. Whereas the global methods used in DSGE modeling, such as
projection and stochastic simulations, suffer from the curse of dimensionality, i.e.
they can handle only small-dimension models. The proposed approach has a
potential to solve high-dimensional models, as it shares some preferable properties
with the local perturbation methods. Namely, the computational gain may come
from calculation of conditional expectations.

To compute conditional expectations using the semi-global method, all that we need
is to know the moments of distribution up to the order of approximation, while the
use of the global methods mentioned above involves either stochastic simulations or
quadratures. The former is time consuming, the latter can deal with only low-order
integrals.

The approach is applicable to Markov-switching DSGE models in the form proposed
by Foerster et al. (2013), where the vector of Markov-switching parameters that
would influence the steady state is scaled by a small factor. Actually, under the
conditions of "smallness” of a scaling parameter and existence of higher order
moments for stochastic terms, all derivations of Section 3 hold irrespective of
probability distribution functions for these stochastic terms.




SEMI-GLOBAL SOLUTIONS TO DSGE MODELS: PERTURBATION AROUND A DETERMINISTIC PATH

APPENDICES

Appendix A
Proofs for Section 5

PROOF OF PROPOSITION 5.1. The proof is by induction on i. Suppose that
i=0.Fortime T from (35) we obtain

ET Ur g = BT+1uT +Q21,T+1ST +\P2,T+1ET77T+1'
As B, isinvertible, we get

— A
Urr = _KT,TST —Orot LT,T,T ETUT+1

where K, ; = BT+1Q21T+17 Oro = BT+1\P2T+1ET77T+11 and LT1T+1 = B‘Fil From (36),

(37) and (39) it follows that the inductive assumption is proved for i = 0. Assuming
that (38) holds for i >0, we will prove it for i + 1. To this end, consider equation
(35) for time t =T —i—1. As the matrix B;_; is invertible, we obtain

T T I—l BT Q21T —ivT-i-1 B'iji\PZ,T—i ET—i—l77T—i + B—F: ET—i—luT,T—i'

Substituting the induction assumption (38) for u; ;_; yields

— -1 -1
uT,T—i—l - _BT—iQZLT—iST—i—l - BT—i\PZ,T—i ET—i—lnT—i

i+1
+ B'I'_Ei ET—i—1|:_ KT,T—iST—i + 01 +(HL;1,T—i+k)ET—i (UT+l)j|'

k=1

Substituting (34) for E; , ;(S;_;) and using the law of iterated expectations gives

uTT |—1 BT |Q21T —ivT-i-1 B'I?ii\IlZ,T—i ET—i—177T—i +B'FiigT,i

i+1
+ B{fi (HLTI,T—Hk jET—i—1(UT+1)

k=1

+ B‘I?Ei [_ Krrs (AT—isT—i—l +QprUr i + Wi Bt )]

Collecting the terms with U; ;_;,, S;;, and 7;_;, we get

(I +BrL Ky Qe )‘JT,T—i—l = B[ Quur + Kr 1A L)Sr oy

i+l

+(lP2,T—i + KT,T—i\Pl,T—i)ET—i—lnT—i + 01 (HLTlT |+kj Toi-1 T+1)]-

Suppose for the moment that the matrix Z, . = I +B;%, K;15Qur is invertible.

Pre-multiplying the last equation by ZT 7_i» We obtain
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Urr = =Zr Bl Qe + Ker i Ac)S iy
+(Wori + Ke r i Wir i) Er it i+ Oy

i+1
+(HLTl,T—H—kJET—i—l(uT-ﬂ)]'
k=1
Note that L; ;_; = B;;Z; ;_;; then using the definition of K, ;_;_, (36), we see that

Urroia = _KT,T—i—lsT—i—l

- L;l,T—i (\PZ,T—i + KT,T—ilPLT—i )ET—i—lﬂT—i (70).

i+1
+ L}l,T—igT,i + I—;l,T—i (HLTl,T—H—k jET—i—l(unl)

k=1

Using the definition of g, ; and L; ;; ;,; ((37) and (39)), we deduce that

Orin = —Lrri (\Pz,m + Ko Wir )ELHUH + Loy 0y (71).

From (70) and (71) it follows that
i+2 L
Urrig = —KeriaSria + 0+ (HLT Ticlek jETil(uTJrl)'
k=1
This proves the proposition.

PROOF OF PROPOSITION 5.2. We begin by rewriting (36) as
(BT—i + K 15Qur )KT,T—(i+1) = (Q21,T—i + KT|T—iAT—i)

Rearranging terms, we obtain

KT,T—(i+1) = BT_Ei '(Qzl,T—i + KT,T—iAT—i)
- B'I?ii Kr15QuriKrriiy

Taking the norms and using norm properties gives

(72).

L e e S e e LR S L

HKT,T—(Hl)

Rearranging terms, we get

R S

< (73).
LB K] ez

HKT,T—(iJrl)
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i=0,1,..T,
having time-varying coefficients | A._, HBT’fiH, |Qur | and [Qur - In (73) we

assume that

1B | 7] Q] =0

Inequality (73) is a difference inequality with respect to K,

This is obviously true, if K, [ =

|Kr74|=0, (1—HBT*LH~HKT’HH-HlevaiH)>0, i=1,2,...,T. Indeed, consider the
difference equation:

0. We shall show that, if the initial condition

bd + bas;
S, = m (74).
Lemma 8.1
If inequality (40) holds, then the difference equation (74) has two fixed points:
i = 2 (75),

" 1-ba+/(1—ba)? —4b’cd

o 1-ba ++/(1-ba)? —4b%cd
? 2bc
where s, is a stable fixed point, whereas s, is an unstable one. Moreover, under the
initial condition s, =0, the solution s;,i =1,2,..., is an increasing sequence and
converges to s, .

Proof. The lemma can be proved by direct calculation.

From (31)~(30), the values a, b, cand d majorise A, ;| | HB{LH, |Quzri| and
HQZLHH respectively. If we consider equation (71) and inequality (74) as initial
value problems with the initial conditions |K; . ,[=0 and s, =0, their solutions

obviously satisfy inequality K, ; [<s.,, i=1,2,...,T . In other words, K

i+ T,T—iH

is majorised by s;. From the last inequality and Lemma 8.1, it may be concluded
that

|Krri|<s, i=01,2,.,T, TeN (76).
From (75), (76) and (31) it follows that

2b%dc

=B - ;
P - e

(77).




SEMI-GLOBAL SOLUTIONS TO DSGE MODELS: PERTURBATION AROUND A DETERMINISTIC PATH

From inequality (40) we see that 2b°dc < (1—ab)?/2. Substituting this inequality
into (77) gives
(1-ba)’
© 2(1-ba++/(1—ba)? —4b%cd)
(1-ba)* _1-ha
< = <
2(1—ba) 2

[B22 - -]
(78)

1

where the last inequality follows from (33). This proves Proposition 2.

PROOF OF PROPOSITION 5.4. The assertion of the proposition is true, if there
exist constants M and r suchthat 0<r<landfor T eN

|Ke = Krap|<Mr™, j=01.2,.... (79).

Note now that K., (K;, ;) is a solution to matrix difference equation (36) at
i=T—j (i=T+1-j) with the initial condition K;;,=0 (K;,.,,=0).
Subtracting (72) for K; 1 .,y from that for K., .;), we have

—Rp-1
KT,T—(i+1) - KT+1,T—(i+l) =B (KT,T—i) - KT+1,T—i)AT—i

-1 -1
-B KT,T—i)QlZ,T—i KT,T—(i+1) +Br KT+1,T—iQ12,T—i KT+1,T—(i+1)'

Adding and subtracting B, - Ky ;- Qpr i - K+ .17 sy in the right-hand side gives

Krron = Kranrgey = Broi (Ke sy = Kpgr) A
o B{fi ’ KT,T—i 'QlZ,T—i (KT,T—(Hl) - KT+1,T—(i+1))
- B‘ii (KT,T—i - KT+1,T—i)Q12,T—i ' KT+1,T—(i+1)'

Rearranging the terms yields

(I+ B‘I'_Ei KT,T—inZ,T—i )(KT,T—(i+1) - KT+1,T—(i+1)
= B‘;ii(KT,T—i - KT+1,T—i)AT—i
- Béi (KT,T—i - KT+1,T—i )QlZ,T—i KT+1,T—(i+1)'

From proposition 5.3 it follows that the matrix
Ziii= (I+ B‘Iji KT,Tfinz,T—i)

is invertible, then pre-multiplying the last equation by this matrix yields

KT,T—(i+1) - KT+1,T—(i+l) = ZT_,lT—i (BT_: (KT T-i T KT+1,T—i)AT—i
- BT_];| (KT,T—i) - KT+1,T—i)Q12,T—i KT+1,Tf(i+1))'
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Taking the norms, using the norm property and the triangle inequality, we get

HZTT |H (HB{L H'”KT,T—i - KT+1,T—i H”AT—l ”

HKT,T—(iJrl) KT+1T —(i+1)

(80)
+HBT7Ei H'HKT,T—i) - KT+1,T—i H'HQlZ,T—i H'HKTH,T—(PA) )
From (30) and (78), we have
HKTT (i+1) KT+1T (i+1) (ab+ ]HZTT |H HKT,T—i - KT+1,T—i H
l+ b HZT T- |H HKT,T—i - KT+1,T—i H (81).

From the norm property and Golub and Van Loan (1996, Lemma 2.3.3), we get the
estimate

1 1
<
1- HB{: KT,T—i QlZ,T—i H 1- HB{: H ) HKT,T—i H ’ HQlZ,T—i H

HZTT |H = H(I +B KT,T—inZ,T—i)_lu =

By inequality (78), we have

12
1_1—ba 1+ba’
2

Substituting the last inequality into (81) gives

< HKT,T—i - KT+1,T—i H (82).

-1
23] <

H KT T-(i+1) KT +1,T—(i+1)

Using (85) successively for i =-1,0,1,...,T -1 and taking into account K; ;,, =0

—Rp! H
and KT+1,T+1 - BT+2Q21,T+2 results in

HKT i KT*ll HKT,T+1 —Kiaral = ‘ BT_Jleranz
‘ = HQ21T+2 bHQ21,T+2 , 1=012,... (83).

Recall that Q,,; depends on the solution to the deterministic problem (14), i.e.
Qur = QZl( O xO 20 z(o)). From Hartmann (1982, Corollary 5.1) and
differentiability of Q,, with respect to state variables it follows that

HQZl,T H <C(a+0)' (84)

where « is the largest eigenvalue modulus of the matrix A from (23), C is some
constant and @ is an arbitrary small positive number. In fact, « + & determines the




SEMI-GLOBAL SOLUTIONS TO DSGE MODELS: PERTURBATION AROUND A DETERMINISTIC PATH

speed of convergence for the deterministic solution to the steady state. Inserting (84)
into (85), we can conclude

|Ks = Kraj| <bCl@+6)*, j=0,1,2,... (85).

Denoting M =bC(a+0) and r =a+6, we finally obtain (79). This proves the
proposition.

Appendix B
Series expansion for Burnside's model

Substituting (56) and (57) into (53) yields

y© (xfo) +oxV )+ oy® (xfo) +ox )+ o’y® (xt(o) +oxV )+

— 0 1 0 0 1 1 0 1

= FEAexplo(x® + ox )] - 11+ y© (x + o )+ oy (x@ + ox)
2,@ (v @

+o'y (Xt+l +0Xt+l)+“']}'

Expanding Y, for small o up to order two gives

1 2
0) 0), (1) 2,0 (@ (1), (0) 2,1, ® 2,,0)
Yi +0Yi X +EG You (Xt ) ToOy XU +OT Y X oY

1 2
= 1, eXp(OD)| 1+ 0t 3 ot - [y 4 2]

+

1 2
2 0) (1) (1) 2,1 @ 2y,
+to E Yot (Xt+l) +0YiatO YiduXia 0 Yt -]

Collecting the terms of like powers of o of the last equation, we obtain
©) ©y® | DO 2| @ L yOy® 4 100
2 +<7[(y1’txt +y7UX ]+0 Y+ Yo X +Ey2’t(xt )}+
= pexp(ox? JEL+ y2) + oo @+ v + vl + v
F O (O Wy + v+ y X+ yx 2y (]

© (yO )P 0
+ 9)/1,t+1 (Xt+l) + @(m yt+1] t+- }
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