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ABSTRACT 

This study presents an approach based on a perturbation technique to construct 
global solutions to dynamic stochastic general equilibrium models (DSGE). The 
main idea is to expand a solution in a series of powers of a small parameter scaling 
the uncertainty in the economy around a solution to the deterministic model, i.e. the 
model where the volatility of the shocks vanishes. If a deterministic path is global in 
state variables, then so are the constructed solutions to the stochastic model, whereas 
these solutions are local in the scaling parameter. Under the assumption that a 
deterministic path is already known the higher order terms in the expansion are 
obtained recursively by solving linear rational expectations models with time-
varying parameters. The present work proposes a method which rests on backward 
recursion for solving this type of models. 

Keywords: DSGE, perturbation method, rational expectations models with time-
varying parameters, asset pricing model 

JEL codes: C61, C62, C63, D50, D58 
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NON-TECHNICAL SUMMARY 

DSGE modelling based on perturbation technique is being challenged in the 
aftermath of the crisis. Big and persistent shocks and accumulated imbalances may 
move an economy far away from a steady state where perturbations around the 
steady state are not correct. The initial conditions for the economy (for example, an 
economy in transition) may also be far away from the steady state. This has renewed 
interest towards global, nonlinear methods. The global methods (projection, 
stochastic simulation, etc.) can compute solutions on large domains as opposed to 
the perturbation methods. However, the global methods suffer from computational 
costs growing fast with the dimensionality of state space. This phenomenon, called 
the curse of dimensionality, restricts the application of the projection methods even 
to medium-sized models. 

This study presents some alternative approach to the conventional global methods, 
which in a sense is a generalisation of perturbation around the steady state but is 
global. The proposed solutions are represented as a series in powers of a small 
parameter σ  scaling the uncertainty in the economy. The zero order approximation 
corresponds to the solution to the deterministic model, because the volatility of 
shocks vanishes. Global solutions to deterministic models can be obtained 
reasonably fast by effective numerical methods and using well-developed software, 
such as Dynare and Troll, that incorporate these algorithms. 

Assuming that the deterministic solution is already known, we obtain systems of 
higher-order approximations that depend only on quantities of lower orders and 
therefore can be solved recursively, and whose linear homogenous parts depend on 
the deterministic solution. Consequently, each system can be represented as a 
rational expectations model with time-varying parameters. The present work 
proposes a method for solving this type of models. 

If the parameter σ  is small enough, the solutions obtained are close to the 
deterministic solution. At the same time, whenever the deterministic solution is 
global in state variables, so is the approximate solution to the stochastic problem. 
For this reason, we shall call this approach semi-global, whereas perturbation 
methods based on series expansion around the steady state will be referred to as 
local. In contrast to the solutions obtained by local perturbation methods, the 
solutions provided by the semi-global method inherit "global" properties, such as 
monotonicity and convexity, from the exact solution. 

We apply the method to the asset pricing model of Burnside (1998). Since the model 
has a closed-form solution, we can check the accuracy of an approximate solution 
against the exact one. We compare the accuracy of the second order solution of the 
semi-global method with the local Taylor series expansion of order two (Schmitt-
Grohé and Uribe (2004)). The semi-global approach indicates superior performance 
in accuracy and inherits global properties from the exact solution. 

Lombardo (2010) uses series expansion in powers of σ  to find approximations to 
the exact solution recursively. Borovička and Hansen (2012) employ Lombardo's 
approach to construct shock-exposure and shock-price elasticities, which are asset-
pricing counterparts to impulse response functions. This approach has some 
similarity with one employed in the current paper. However, both papers apply the 
expansion only around the deterministic steady state; therefore the solution obtained 
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remains local. Lombardo's approach can be treated as a special case of the method 
proposed in this study, namely a deterministic solution around which the expansion 
is used only in the steady state.  
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1. INTRODUCTION 

Perturbation methods are the most widely-used approach to solve nonlinear DSGE 
models owing to their ability to deal with medium-size and large-size models for 
reasonable computational time. Perturbations applied in macroeconomics are used to 
expand the exact solution around a deterministic steady state in powers of state 
variables and a parameter scaling the uncertainty in the economy. The solutions 
based on the Taylor series expansion are intrinsically local, i.e. they are accurate in 
some neighbourhood (presumably small) of the deterministic steady state. Out of the 
neighbourhood, for example, in the case of sufficiently large shocks (or under the 
initial conditions that are far away from the steady state), the approximated solution 
can imply explosive dynamics, even if the original system is still stable for the same 
shocks (or initial conditions) (Kim et al. (2008) and Den Haan and De Wind (2012)). 

This study presents an approach based on a perturbation technique to construct 
global solutions to DSGE models. The proposed solutions are represented as a series 
in powers of a small parameter σ  scaling the covariance matrix of the shocks. The 
zero order approximation corresponds to the solution to the deterministic model, 
because all shocks vanish as 0=σ . Global solutions to deterministic models can be 
obtained reasonably fast by effective numerical methods1 even for large-size models 
(Hollinger (2008)). For this reason, the next stages of the method are implemented 
assuming that the solution to the deterministic model under the given initial 
conditions is known. 

Higher-order systems depend only on quantities of lower orders, hence they can be 
solved recursively. The homogeneous part of these systems is the same for all orders 
and depends on the deterministic solution. Consequently, each system can be 
represented as a rational expectation model with time-varying parameters. In the 
case of rational expectations models with constant parameters, the stable block of 
equations can be isolated and solved forward. This is not possible for models with 
time-varying parameters. The present work proposes a method for solving this type 
of models. The method starts with finding a finite-horizon solution by using 
backward recursion. Next, we prove that under certain conditions, as the horizon 
tends to infinity, the finite-horizon solutions approach a limit solution that is 
bounded for all positive time. 

If the parameter σ  is small enough, the solutions obtained are close to the 
deterministic solution. At the same time, whenever the deterministic solution is 
global in state variables, so is the approximate solution to the stochastic problem. 
For this reason, we shall call this approach semi-global, whereas perturbation 
methods based on the series expansion around the steady state will be referred to as 
local. In contrast to solutions obtained by local perturbation methods, the solutions 
provided by the semi-global method inherit "global" properties, such as 
monotonicity and convexity, from the exact solution and thus cannot explode by 
construction. 

                                                             
1 The algorithms incorporated in the widely-used software such as Dynare (and less available 
Troll) find a stacked-time solution and are based on Newton's method combined with sparse-
matrix techniques (Adjemian et al. (2011)). 
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We apply the method to the asset pricing model of Burnside (1998). Since the model 
has a closed-form solution, we can check the accuracy of an approximate solution 
against the exact one. We compare the accuracy of the second order solution of the 
semi-global method with the local Taylor series expansion of order two (Schmitt-
Grohé and Uribe (2004)). The semi-global approach indicates superior performance 
in accuracy and inherits global properties from the exact solution. 

This paper contributes to the growing literature on using the perturbation technique 
for solving DSGE models. The perturbation methodology in economics has been 
advanced by Judd and co-authors as in Judd (1998), Gaspar and Judd (1997), Judd 
and Guu (1997). Jin and Judd (2002) give a theoretical basis for using perturbation 
methods in DSGE modeling; namely, applying the implicit function theorem, they 
prove that the perturbed rational expectations solution continuously depends on a 
parameter and therefore tends to the deterministic solution as the parameter tends to 
zero. 

Almost all of the literature is concerned with approximations around the steady state 
as in Collard and Juillard (2001), Schmitt-Grohé and Uribe (2004), Kim et al. 
(2008), Gomme and Klein (2011). Lombardo (2010) uses series expansion in powers 
of σ  to find approximations to the exact solution recursively. Borovička and 
Hansen (2012) employ Lombardo's approach to construct shock-exposure and 
shock-price elasticities, which are asset-pricing counterparts to impulse response 
functions. This approach has some similarity with that employed in the current 
paper. However, both papers apply the expansion only around the deterministic 
steady state, therefore the solution obtained remains local. Lombardo's approach can 
be treated as a special case of the method proposed in this study, namely a 
deterministic solution around which the expansion is used is only the steady state. 

Judd (1998) outlines how to apply perturbations around the known entire solution, 
which is not necessarily the steady state. He considers the simple continuous and 
discrete-time stochastic growth models in the dynamic programming framework. 
This paper develops a rigorous approach to construct solutions to DSGE models in 
general form by using the perturbation method around a global deterministic path. 

The rest of the paper is organised as follows. Section 2 presents the model set-up. 
Section 3 provides a detailed exposition of series expansions for DSGE models. In 
Section 4, we transform the model into a convenient form to deal with. Section 5 
presents a method for solving rational expectations models for time-varying 
parameters. The proposed method is applied to an asset pricing model in Section 6, 
where it is also compared with the local perturbation method in terms of accuracy. 
Conclusions are presented in Section 7.  
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2. THE MODEL  

DSGE models usually have the following form:  

0=),,,,,( 111 ttttttt zzxxyyfE +++  (1), 

)(0,,= 111 Ω+Λ +++ Nzz tttt :εσε  (2) 

where tE  denotes the conditional expectations operator, tx  is an 1×xn  vector 
containing t-period endogenous state variables; ty  is an 1×yn  vector containing  

t-period endogenous variables that are not state variables; tz  is an 1×zn  vector 
containing t -period exogenous state variables; tε  is the innovations vector; Ωσ  is 

zz nn ×  covariance matrix of innovations; f maps znznxnxnynyn
RRRRRR ×××××  

into xnyn
RR ×  and is assumed to be sufficiently smooth; σ ( 0>σ ) is a scaling 

parameter for the disturbance terms tε . We assume that all mixed moments of tε  
are finite. All eigenvalues of the matrix Λ  have modulus less than one. 

The solution to (1) and (2) is  

),(= ttt zxhy  (3) 

where h  maps znxn
RR ×  into yn

R . Another way of stating the problem to solve is 
to say: for a given initial condition ),( 00 zx  find the initial condition 0y  such that the 
solution ),( tt yx  to (1) and (2) will be bounded for all 0>t .  
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3. SERIES EXPANSION 

In this section, we shall follow the perturbation methodology (see, for example, 
Holmes (2013)) to derive an approximate solution to the model (1) and (2). For 
small ,σ  we assume that the solution has the following particular form of 
expansions:  

),(= )(

0=
tt

nn

n
t zxyy σ∑

∞

  (4), 

)(

0=
= n

t
n

n
t xx σ∑

∞

  (5) 

where ),()(
tt

n zxy  and )(n
tx , ,0,1,2,= n  are the n-order of approximation to the 

solution (3) and the variable tx  respectively. The exogenous process tz  can also be 
easily represented in the form of expansion in σ :  

(1)(0)= ttt zzz σ+   (6). 

Indeed, plugging (6) into (2) gives  

.)(== 1
(1)(0)(1)

1
(0)

11 ++++ ++Λ+ tttttt zzzzz σεσσ  

Collecting the terms of like powers of σ  and equating them to zero, we get  
(0)(0)

1 = tt zz Λ+  (7), 

1
(1)(1)

1 = ++ +Λ ttt zz ε  (8). 

Since the expansion (6) must be valid for all σ  at the initial time t = 0, the initial 
conditions are  

0
(0)
0 = zz  and 0=(1)

0z   (9). 

Note that the arguments of functions )(iy  are expansions in powers of .σ  
Substituting the expansions (5) and (6) into (4) yields 









+∑∑

∞∞
(1)(0))(

0=

)(

0=
,= tt

j
t

j

j

ii

i
t zzxyy σσσ   (10). 

Expanding ty  for small σ  and collecting the terms of like powers, we obtain  

),,,...,,(= (1)(0))((1)(0))(*

0=
tt

n
ttt

nn

n
t zzxxxyy σ∑

∞

  (11) 

where  

),,(=),( (0)(0)(0)(0)(0)*(0)
tttt zxyzxy  
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,),(=),,,( (1)(0)
0,1;

(1)(0)
1,0;

(0)(0)(1)(1)(0)(1)(0)*(1)
tttttttttt zyxyzxyzzxxy ++  

and  

tn
n

tttt
n

tt
n

ttt
n pxyzxyzzxxxy ,

)((0)
1,0;

(0)(0))((1)(0))((1)(0))*( ),(=),,,...,,( ++  (12) 

where the mapping ),,,,,(= (1)(0)1)((1)(0)
, tt

n
tttntn zzxxxpp −  has arguments with 

superscript less than n  and is defined as  

( )


















 −−∑∑∑∑
−−+++

−−− l
t

ki
t

i
t

i
t

kljnkiii

j
tlk

ljn

k

ln

j

n

l
tn zxxx

iii
ljny

kl
p (1))()2()1(

21=21

)(
;,

1=0=0=
, ,,...,,

;...;;!
1

!
1=



Here )(
;,

j
tlky  denotes the mixed partial derivative of )( jy  of order k  and l  with 

respect to tx  and tz  respectively at the point ),( (0)(0)
tt zx , and ( ) ),,(= (1)(1)(1)

tt
l

t zzz   

( l  times). In other words, )(
;,

j
tlky  is a )( lk + -multilinear mapping (see, for example, 

Abraham et al. (2001; p. 55)) depending on ),( (0)(0)
tt zx  (and hence on t ). 

Substituting (12) into (11), we can rewrite the latter as  

[ ]tn
n

tttt
nn

n
t pxyzxyy ,

)((0)
1,0;

(0)(0))(

0=
),(= ++∑

∞

σ   (13). 

Then substituting (5), (6) and (13) into (1), collecting the terms of like powers of σ  
and setting their coefficients to zero, we have 

Coefficient of 0σ   

( ) 0,,,),,(),,( (0)(0)
1

(0)(0)
1

(0)(0)(0)(0)
1

(0)
1

(0) =++++ tttttttt zzxxzxyzxyf  (14). 

The requirement that (5) and (6) must hold for all arbitrary small σ  implies that the 
initial conditions for (14) are  

0
(0)
0 = zz  and       0

(0)
0 = xx   (15). 

The terminal condition is the steady state. The system of equations (7) and (14) is a 
deterministic model since it corresponds to the model (1) and (2) where all shocks 
vanish. The deterministic model defined by equations (7) and (14) with the initial 
conditions (15) can be solved globally by a number of effective algorithms, for 
example, the extended path method (Fair and Taylor (1983)) or a Newton-like 
method (for example, Juillard (1996)). As this study is primarily concerned with 
stochastic models, in what follows we suppose that the solution )),(,( (0)(0)(0)(0)

ttt zxyx  
for 0>t  to the deterministic model is already known. 

Coefficient of nσ , 0>n   

[ ]
[ ] 0=}
{

)(
1

)(
14,

(0)
1,0;12,

)(
113,

(0)
11,0;11,

)(
12,

)(
111,

n
t

n
tttt

n
tttt

n
tt

n
ttt

xfyf
xfyfyfyfE

+++

+++++++

++⋅+
+⋅+⋅+⋅

η
 (16) 
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where ),(= (0)(0))()(
tt

nn
t zxyy . The requirement that (5) must hold for all arbitrary 

small σ  implies that the initial condition for equation (16) is  

0=)(
0

nx   (17). 

The matrices  

( ) ,6,1,=,,,,),,(),,(= (0)(0)
1

(0)(0)
1

(0)(0)(0)(0)
1

(0)
1

(0)
1, izzxxzxyzxyff ttttttttiti +++++  

are the Jacobian matrices of mapping f  with respect to 1+ty , ty , 1+tx , tx , 1+tz , and 

tz  respectively at point 

( ).,,,),,(),,( (0)(0)
1

(0)(0)
1

(0)(0)(0)(0)
1

(0)
1

(0)
tttttttt zzxxzxyzxy ++++  

The mapping )(n
ttEη  takes the following form:  

( )(1)(1)
1

(0)(0)
1

1)(1)(
1

(0)(0)
1

)()(
1 ,,,,,,,,= tttt

n
t

n
ttt

n
t

n
tt zzzzxxxxEE ++

−−
+++ ηη  

where )(nη  is some mapping for which the set of arguments includes only quantities 
of order less than n. The vector (1)

1+tz  enters expectations )(
1

n
ttE +η  in the form of mixed 

moments of order n or less. The subscript t + 1 in 1, +tif  and )(
1

n
t+η  reflects their 

dependence on t + 1 through (0)
1+tx  and (0)

1+tz . 

The expectations )(
1

n
ttE +η  is bounded if all mixed moments of (1)

1+tz  are bounded up to 
order n  and vectors  

( )(1)(1)
1

(0)(0)
1

1)(1)(
1

1)(1)(
1

(0)(0)
1

(0)(0)
1 ,,,,,,,,,,,, tttt

n
t

n
t

n
t

n
ttttt zzzzxxyyxxyy ++

−−
+

−−
+++   

are bounded for all 0≥t . 

Equation (16) with the initial condition (17) is a linear rational expectations model 
with time-varying coefficients. To solve the problem (16) and (17) is equivalent to 
finding a bounded solution ),( )()( n

t
n

t yx  for 0>t  under the assumption that the 
bounded solutions to problems of all orders less than n  are already known. It is 
worth noting that the homogeneous part of (16) is the same for all 0>n  and the 
difference is only in the non-homogeneous terms )(

1
n

ttE +η . In Section 5, we present a 
method for solving such types of model and prove the convergence of the solutions 
implied by the method to the exact solution. In the next section, we transform 
equation (16) in a more convenient form to deal with. 
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4. TRANSFORMATION OF THE MODEL 

We define the deterministic steady state as vectors ,0),( xy :  

0=,0,0),,,( xxyyf   (18). 

We can represent 1, +tif  in equation (16) as 1,1,
ˆ= ++ + tiiti fff , ,61,= i , where 

,0,0),,,(= xxyyff ii  are the Jacobian matrices of the mapping f  with respect to 

1+ty , ty , 1+tx , tx , 1+tz , and tz  respectively at the steady state, and  

,0,0),,,(),,,,,(=ˆ (0)(0)
1

(0)(0)
1

(0)(0)
11,1, xxyyfzzxxyyff itttttttiti −+++++  (19). 

Note also that 0ˆ
1, →+tif  as ∞→t , because a deterministic solution must tend to the 

deterministic steady state as t  tends to infinity. Consequently, 1, +tif  can be thought 

of as a perturbation of if . To shorten notation, further on superscript )(n  is omitted 
when no confusion can arise. Equation (16) can be written in the vector form:  

11
1

1
1 = ++

+

+
+ +








Λ








Φ tt

t

t
t

t

t
tt E

y
x

y
x

E η   (20) 

where [ ]ttt ffff 1,13,3
ˆ,ˆ= ++Φ  and [ ]ttt ffff 2,24,4

ˆ,ˆ= ++Λ . It is assumed that the 

matrices tΦ  are invertible for all 0≥t . This assumption holds if, for example, the 

Jacobian [ ] 1
13, −ff  at the steady state is invertible2 and terms tf1,

ˆ  and tf3,
ˆ  are small 

enough for all 0≥t . Pre-multiplying (20) by 1
1

−
+Φ t , we get  

1
1
11

1

1 = +
−
++

+

+ Φ+







+
















ttt

t

t
t

t

t

t

t
t E

y
x

M
y
x

L
y
x

E η   (21) 

where [ ] [ ]24
1

13 ,,= ffffL −  and  

[ ] [ ] [ ] [ ]24
1

1312,214,4

1

11,113,31 ,,ˆ,ˆˆ,ˆ= ffffffffffffM ttttt
−

++

−

+++ −++++ . 

Notice that 0=tt Mlim ∞→ . As in the case of rational expectations models with 
constant parameters it is convenient to transform system (21) using the spectral 
property of L . Namely, the matrix L  is transformed into a block-diagonal one 
using the block-diagonal Schur factorisation3  

                                                             
2 This assumption is made for ease of exposition. If ],[ 13 ff  is a singular matrix, then further on 
we must use a generalised Schur decomposition for which derivations remain valid, but become 
more complicated. 
3 The function bdschur of Matlab Control System Toolbox performs this factorisation. 
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1= −ZPZL   (22) 

where  









B

A
P

0
0

=   (23) 

where A  and B  are quasi upper-triangular matrices with eigenvalues larger and 
smaller than one (in modulus) respectively and Z  is invertible matrix4. We also 
impose the conventional Blanchard–Kahn condition (Blanchard and Kahn (1980)) 
on the dimension of the unstable subspace, i.e. ynBdim =)( . 

After introducing the auxiliary variables  
'

tt
'

tt yxZus ],[=],[ 1−   (24) 

and pre-multiplying the system (21) by 1−Z , we obtain  

111112,111,1 = +++++ Ψ+++ tttttttttt EuQsQAssE η  (25), 

112122,121,1 = +++++ Ψ+++ tttttttttt EuQsQBuuE η  (26) 

where 1
112,11, =],[ −
+++ ΦΨΨ ttt Z  and  

1
1

122,121,

112,111, = −
+

++

++








ZZM

QQ
QQ

t
tt

tt   (27). 

The system of equations (25) and (26) is a linear rational expectations model with 
time-varying parameters, hence we cannot apply the approaches used in the case of 
models with constant parameters (Blanchard and Kahn (1980), Anderson and Moore 
(1985), Sims (2001), Uhlig (1999), etc.). In Subsection 5.2, we develop a method for 
solving this type of models. 

                                                             
4 A simple generalised Schur factorisation is also possible to be employed here but at the cost of 
more complicated derivations. 
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5. SOLVING THE RATIONAL EXPECTATIONS MODEL WITH TIME-VARYING 
PARAMETERS 

5.1 Notation 

This Subsection introduces some notation that will be necessary further on. By || ⋅  
we denote the Euclidean norm in nR . The induced norm for a real matrix D  is 
defined by  

.||sup=
1|=|

DsD
s

 

Matrix Z  in (22) can be chosen in such a way that  

1<< γα +A  and 1<<1 γβ +−B   (28) 

where α  and β  are the largest eigenvalues (in modulus) of the matrices A  and 
1−B  respectively, and γ  is arbitrarily small. This follows from the same arguments 

as in Hartmann (1982; §IV 9) where it is done for the Jordan matrix decomposition. 
Note also that 1<1−B  for sufficiently small γ . Let  

tttt QAAQBB 11,22, = and= ++   (29). 

By definition, put  

1

0,1,=0,1,=
sup=,sup= −

t
t

t
t

BbAa


 (30), 

t
t

t
t

QdQc 21,
0,1,=

12,
0,1,=

sup=,sup=


 (31). 

Further on, we assume that all the matrices tB , , 1, 0,=t   are invertible. The 

numbers a , b , c  and d  depend on initial conditions ),( (0)
0

(0)
0 zx . From the 

definitions of tA , A , tB , B , tQ12,  and tQ21,  and condition ,0)(=),( (0)(0) xzxlim ttt ∞→  
it follows that  

0=),(lim0,=),(lim (0)(0)(0)(0)
tt

t
tt

t
zxdzxc

∞→∞→
  (32). 

1.<=),(lim1,<=),(lim 1(0)(0)(0)(0) −

∞→∞→
BzxbAzxa tt

t
tt

t
 

This means that c  and d  can be arbitrary small and  

1<and1< ba   (33) 

by choosing ),( (0)
0

(0)
0 zx  close enough to the steady state. 
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5.2 Solving transformed system (25)–(26) 

Taking into account notation (29), we can rewrite (25)–(26) in the following form:  

111,112,11 = +++++ Ψ++ ttttttttt EuQsAsE η  (34), 

112,121,11 = +++++ Ψ++ ttttttttt EsQuBuE η  (35). 

In this Subsection, we construct a bounded solution to the system (34)–(35) for 
0≥t  with an arbitrary initial condition xns R∈0  and find under which conditions 

this solution exists. For this purpose, we first start with solving a finite-horizon 
model with a fixed terminal condition using backward recursion. Then, we prove the 
convergence of the obtained finite-horizon solutions to a bounded infinite-horizon 
one as the terminal time T  tends to infinity. 

Fix a horizon 0>T . Using the invertibility of 1+TB  and solving equation (35) 
backward, we can obtain Tu  as a linear function of Ts , the terminal condition 

1+TTuE  and the "exogenous" term 112, ++Ψ TTT E η   

.= 1
1
1112,

1
1121,

1
1 +

−
+++

−
++

−
+ +Ψ−− TTTTTTTTTTT uEBEBsQBu η  

Proceeding further with backward recursion, we shall obtain finite-horizon solutions 
for each .,0,1,2,= Tt   For doing this, we need to define the following recurrent 
sequence of matrices:  

( ) TiAKQLK iTiTTiTiTTiTT , 1, 0,=,= ,21,
1

1,1, −−−
−

−+−− +  (36) 

where  

iTiTTiTiTT QKBL −−−− + 12,,, =   (37), 

with the terminal condition 0=1, +TTK . In equations (36) and (37), the first subscript 
T  defines time horizon, while the second subscript defines all times between 0  and 

1+T . Let iTTu −, , ,T, 1, 0,= i  denote )( iT − -time solution obtained by backward 
recursion that starts at time T .  

Proposition 5.1  

Suppose that the sequence of matrices (36) and (37) exists; then the solution to the 
system (34)–(35) has the following representation:  

( )1
1
,

1

1=
,,, = +−

−
+−

+

−−− 







++− ∏ TiTkiTT

i

k
iTiTiTTiTT uELgsKu  (38) 

where ;, 1, 0,= Ti   and  

jiTiTjiTjiTTjiTkiTT

j

k

i

j
iT EKLg +−−+−+−+−

−
+−

+

Ψ+Ψ− ∏∑ η)(= 1,,2,
1
,

1=

1

1=
,  (39). 
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For the proof, see Appendix A. The sequence of matrices (36) exists if all matrices 
iTTL −, , ,,0,1,= Ti   are invertible. For this we need, in addition, some 

boundedness condition on the matrices iTiTTiT QKB −+−
−
− 12,1,
1 . 

Proposition 5.2  

If for a, b, c and d from (30)–(31) the inequality  
22

2
1=1

4
1< 






 −







 −

b
aba

b
cd   (40) 

holds, then  

TiQKB iTiTTiT , 2, 1, 0,=1,<12,1,
1 −+−
−
− ⋅⋅  (41). 

For the proof, see Appendix A.  

Proposition 5.3  

If inequality (41) holds, then matrices iTTL −, , Ti ..., 2, 0,1,= , are invertible.  

Proof. From equation (37) and the invertibility of iTB −  it follows that  

( )iTiTTiTiTiTT QKBIBL −−
−
−−− + 12,,
1

, =   (42). 

Matrices iTTL −,  are invertible if and only if matrices ( )iTiTTiT QKBI −−
−
−+ 12,,
1  are 

invertible. From the norm property and (41) we have  

1.<12,1,
1

12,1,
1

iTiTTiTiTiTTiT QKBQKB −+−
−
−−+−

−
− ⋅⋅≤  

The invertibility of ( )iTiTTiT QKBI −−
−
−+ 12,,
1  now follows from Golub and Van Loan 

(1996; Lemma 2.3.3). 

For Ti =  from equation (38) we have  

( )10
1
,

1

1=
,0,0,0 = +

−
+









++− ∏ TkT

T

k
TTTT uELgsKu   (43). 

This is a finite-horizon solution to the rational expectations model with time-varying 
coefficients (34)– (35) and with a given initial condition 0s . It remains to show that 
the solution ,0Tu  of form (43) converges to some limit as .∞→T  

Proposition 5.4  

If inequality (40) holds, then the limit 

jjT
T

KK ,, =lim ∞
∞→

 for 0,1,2,=j  

exists in the matrix space defined in Subsection 5.1.  
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For the proof, see Appendix A.  

Proposition 5.5  

If inequality (41) holds, then  

0=lim 1
,

1

1=

−
+

∞→
∏ kT

T

kT
L   (44) 

and  

∞
∞→

gg TT
T

=lim ,   (45) 

where ∞g  is some vector in yn
R .  

 

Proof. From (37) and Proposition 5.4 it follows that  

.==lim ,12,,, kkkkkT
T

LQKBL ∞∞
∞→

+  

Then the limit in (44) can be represented as  

1
,

1

1=

1
,

1

1=
lim=lim −

∞

+

∞→

−
+

∞→
∏∏ k

T

kT
kT

T

kT
LL   (46). 

Since kK ,∞  is bounded (it follows from formula (76) in Appendix A) and  

,=limand0,=lim 11
12,

−−

∞→∞→
BBQ k

k
k

k
 

we have 11
, = −−

∞∞→ BLlim kk . Therefore, if 0>δ  is arbitrary small, there is an 

N∈δNN =  such that  

1<=1
, ρδβ +≤−

∞ kL   (47) 

for Nk > , where β  is the largest eigenvalue (in modulus) of the matrix 1−B . From 
this, the norm property and (46) we obtain  

0=limlimlim 1
1
,

1

1=

1
,

1

1=

KT

T
k

T

kT
kT

T

kT
CLL −

∞→

−
∞

+

∞→

−
+

∞→
≤≤ ∏∏ ρ  

where 1C  is some constant. Hence (44) is proved. 

By inequality (47) the factors in (39) decay exponentially with the factor ρ  as 
.∞→j  From this and the boundedness of terms kTK , , k2,Ψ , k1,Ψ  and kE η0 , N∈T  

and 1 , 2, 1,= +Tk  , it follows that the series  
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jjjTjkT

j

k

T

j
TT EKLg η01,,2,

1
,

1=

1

1=
, )(= Ψ+Ψ− −

+

∏∑  

converges to some ∞g  as .∞→T  

From Propositions 5.4 and 5.5 it may be concluded that, as T  tends to infinity, 
equation (43) takes the following form:  

.= 0,00 ∞∞ +− gsKu   (48). 

Formula (48) provides a unique bounded solution to the transformed rational 
expectation model with time-varying parameters (34)–(35). Note also that the proofs 
of Propositions 5.2–5.5 are based on inequality (40) that is a spectral gap condition 
for unstable and stable parts of system (34)–(35), and in a sense substitutes for the 
Blanchard-Kahn condition for rational expectations models with time-varying 
parameters. It follows from (30)–(33) that inequality (40) always holds if initial 
conditions ),( (0)(0)

tt zx  are close enough to the steady state. Nonetheless, condition 
(40) is not local by itself. 

5.3 Restoring original variables )(n
tx  and )(n

ty  

Recall that we deal with the n-order problem (16)–(17), and now we put the 
superscript )(n  back into notation. To find the bounded solution in terms of the 
original variables )(n

tx  and )(n
ty , we need to obtain the initial values )(

0
nu  and )(

0
ns  

that correspond to those of problem (21), i.e. 0=)(
0

nx . From (24) and (48) we get 


















+−
−

∞∞
)(

0

1
)()(

0
)(

,0

)(
0 0

= nnnn

n

y
Z

gsK
s

 

where 1−Z  is a matrix that is involved in the block-diagonal Schur factorisation (22) 
and has the following block-decomposition:  

.= 2221

1211
1








−

ZZ
ZZ

Z  

Hence  
)(

0
12)(

0 = nn yZs  (49), 

)(
0

22)()(
0

)(
,0 = nnnn yZgsK ∞∞ +−  (50). 

Substituting (49) into (50) and assuming that the matrix 12)(
,0

22 ZKZ n
∞+  is invertible, 

we get  
)(112)(

,0
22)(

0 )(= nnn gZKZy ∞
−

∞+   (51). 



SEMI-GLOBAL  SOLUTIONS  TO  DSGE  MODELS:  PERTURBATION  AROUND  A  DETERMINISTIC  PATH 

 

19 

The left-hand side of (51) corresponds to ),( 00
)( zxy n  in (4). The dependence of 

)(
0

ny  on ),( 00 zx  follows from the terms )(
,0
nK∞  and )(ng∞ . Therefore, formula (51) 

determines the solution to the original rational expectations model with time-varying 
parameters (16) and with the initial condition 0=)(

0
nx . The matrix )( 12

,0
22 ZKZ ∞+  

is invertible, if (i) matrix 22Z  is square and invertible, and (ii) the norm of matrix 
,0∞K  is small enough. Condition (i) corresponds to Proposition 1 of Blanchard and 

Kahn (1980); at the same time, condition (ii) can always be attained if initial 
conditions ),( (0)(0)

tt zx  are close enough to the steady state, which follows from (75) 
and (76) of Appendix A. These conditions are not local by themselves.  

By assumption, the solutions of lower order are already computed, thus the policy 
function approximation is of the following form5  

),(= )(

0=
tt

ii
n

i
t zxyy σ∑ . 

If we are interested in finding the solution to the system (1)–(2) (for example, 
impulse response functions); then for each n, knowing )(

0
ny  and using the 

transformations (49)–(51) we can recover initial conditions ),( )(
0

)(
0

nn us , solve 
equations (34)–(35) with these initial conditions, and finally obtain the solution to 
the system (21), using the transformation Z . This provides the solution to (21) in 
the following form:  

,= )(
12

)(
11

)( n
t

n
t

n
t uZsZx +  

)(
22

)(
21

)( = n
t

n
t

n
t uZsZy +  

where ijZ , 2 1,=i , 2, 1,=j  are blocks of the block-decomposition of the matrix Z. 

                                                             
5 In fact, it is not hard to prove that in the case of symmetric distribution of tε  for all odd n  the 

unique bounded solution is 0)( ≡n
tx  and 0)( ≡n

ty . We will show this for a simple asset pricing 

model in Section 6 for 1=i .  
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6. ASSET PRICING MODEL 

In this Section, we apply the presented method to a nonlinear asset pricing model 
proposed by Burnside (1998) and analysed by Collard and Juillard (2001). The 
representative agent maximises the lifetime utility function  









∑
∞

θ
β

θ
tt

t

CE
0=

0max  

subject to  

ttttttt edepCep +++ =1  

where 0>β  is a subjective discount factor, 1<θ  and 0≠θ , tC  denotes 
consumption, tp  is the price at date t  of a unit of the asset, te  represents units of a 
single asset held at the beginning of period t , and td  is dividends per asset in period 
t . The growth of rate of dividends follows an AR(1) process  

11t x)(1=x +− ++− ttx σερρ   (52) 

where )/(= 1−ttt ddlnx  and (0,1)1 NIIDt ~+ε . The first order condition and market 
clearing yields the equilibrium condition  

( )[ ]11 1)(exp= ++ + tttt yxEy θβ   (53) 

where ttt dpy /=  is the price-dividend ratio. This equation has an exact solution of 
the following form (Burnside (1998)):  

[ ])(exp=
1=

xxbay tii
i

i
t −+∑

∞

β   (54) 

where  









−
−

+
−
−

−







−

+ 2

222

1
)(1

1
)(12

12
1=

ρ
ρρ

ρ
ρρ

ρ
θσθ

ii

i iixa  (55) 

and  

.
1

)(1=
ρ
ρθρ

−
− i

ib  

It follows from (53) that the deterministic steady state of the economy is  

.
)(exp1

)(exp=
x

xy
θβ

θβ
−
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6.1 Solution  

We now obtain a solution to the system (52)–(53) as an expansion in powers of the 
parameter σ  using the second-order approximation method developed in Sections 
3–5. Specifically, we are seeking for the solution of the form:  

)()()(= (2)2(1)(0)
tttt xyxyxyy σσ ++  (56), 

(1)(0)= ttt xxx σ+  (57). 

Substituting (57) into (52) and collecting the terms containing 0σ  and 1σ , we 
obtain representation (57) for tx   

(0)(0)
1 x)(1= tt xx ρρ +−+  (58), 

1
(1)(1)

1 = ++ + ttt xx ερ  (59). 

Since expansion (57) must be valid for all σ  at the initial time 0=t , the initial 
conditions are  

0== (1)
00

(0)
0 xandxx   (60). 

Substituting (56) and (57) into (53), then collecting the terms of like powers of σ  
and setting the coefficients of like powers of σ  to zero, we obtain (for details see 
Appendix B): 

coefficient of 0σ   

))(1(exp= (0)
1

(0)
1

(0)
++ + ttt yxy θβ  (61), 

(0)(0)
1 = tt xx ρ+  (62), 

coefficient of 1σ   

[ ](1)
1

(1)
1

(0)
11;

(0)
1

(1)
1

(0)
1

(1)(1)(0)
1;

)(1)(exp
=

++++++ ++++
+

ttttttt

ttt

yxyyxEx
yxy

θβθ
 (63), 

1
(1)(1)

1 = ++ + ttt xx ερ  

coefficient of 2σ   

( )
( )[ ] ( )

( ) ( )[ ](2)
1

(1)
1

(1)
11;

(1)
1

(1)
1

(0)
1

2(1)
1

(0)
1

(0)
12,

(0)
11;

(0)
1

2

2(1)(0)
2;

(1)1
1;

(2)

)(exp

)(exp21
2
1

2
1=

++++++

+++++

++++

++++

−−

tttttttt

tttttt

ttttt

yEyyxyEx

xExyyy

xyxyy

θθβ

θθθβ  (64) 

where )(
;
i
tjy , 2, 1,=1, 0,= ji  are derivatives of )(iy  of order j  at point (0)

tx . For 

simplicity of notation, we write )(i
ty  instead of )( (0))(

t
i xy , 2 1, 0,=i . 
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The system (61)–(62) is a deterministic model. Its solution can be obtained by taking 
0=σ  in (54) and (55)  

















−

−
−

+∑
∞

)(
1

)(1exp=
1=

(0) xxixy t

i
i

i
t ρ

ρρθβ  (65). 

For the first order approximation we can rewrite (63) as 

[ ]
(1)

1
(0)

1

(1)
1

(0)
11;

(0)
1

(0)
1

(1)(1)(0)
1;

)(exp
)(1)(exp=

++

++++

+
+++

ttt

tttttttt

yEx
xEyyxyxy

θβ
θθβ

 (66). 

Under the assumption that (0)
ty  and (0)

tx  are known for 0≥t , equations (66) and 

(59) constitute a forward looking model. Since 0=(1)
0x , from (59) we have 

0=(1)
0 txE  for .0>t  It is easily shown that the only bounded solution of (66) is 

0(1) ≡ty  for .0≥t  

Equation (64) is a linear forward-looking equation with time varying deterministic 
coefficients. This equation can be solved by the backward recursion considered in 
Section 5. Taking into account that the initial value of (1)

tx  is zero, it can be easily 
checked that the solution of (64) has the form  

2(1)(0)
1;

(0)2(0)(0)
2

(0)
1

1=

(2)

)(]2

)(1[)]([exp
2
1=

nttnt

ntnttt
n

n
t

xEy

yxxxy

++

++++

∞

⋅+

+⋅+++∑
θ

θθβ 
 (67). 

Here (0)
1; nty +  can be obtained by differentiating (54) with respect to tx  and is given by  

( ) .
1

)(1exp
1

)(1=
1=

(0)
1;

















−

−
−

+
−
−∑

∞

xxixy t

ii
i

i
t ρ

ρρθ
ρ
ρρβ  

From the specification (59) and initial conditions (60), we get the moving-average 
representation for (1)

1+tx :  

....= 1
1

1
(1)

+
−

−+++ +++ t
n

ntntntx ερρεε  

Since the sequence of innovations tε , 0>t  is independent, it follows that  

( ) ( )
2

2
1)2(2

2
1

1
1

2(1)

1
1=1=

=

ρ
ρρρ

ερρεε

−
−

+++

+++
−

+
−

−+++
n

n

t
n

ntnttntt ExE




 (68). 
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From (58), we obtain  

)(
1

)(1=)(

)()(=
(0)(0)

(0)2(0)(0)(0)
2

(0)
1

xxxnxxx

xxxxxxxxx

t

n

t
n

ttnttt

−
−
−

+−++

−++−++++ +++

ρ
ρρρ

ρρ

 (69). 

Finally, inserting (68) and (69) into (67) gives  

 

[ ](0)
1;

(0)2(0)
2

2

1=

2
(2) 2)(1)](

1
)(1[exp

1
1

2
= ntntt

nn
n

n
t yyxxxny ++

∞

++








−
−
−

+
−
−∑ θθ

ρ
ρρθθ

ρ
ρβθ

. 

To summarise, we find the policy function approximation in the following form:  

).()(=)( (2)2(0) xyxyxy tt σ+  

The solutions for higher orders )()( xy i
t , 2>i  can be obtained in much the same 

way as for )((2) xyt . Note also that it is easily shown that for all odd i  the unique 

bounded solution is .0)( ≡i
ty  

6.2 Accuracy check 

This Subsection compares the accuracy of the second order of the presented method 
with the local Taylor series expansions of order 2 (Schmitt-Grohé and Uribe (2004)). 
The following three criteria are used to check the accuracy of the approximation 
methods:  

,
)(

)(~)(
max100=0,







 −

⋅∞
i

ii

i xy
xyxyE  

,
)(

)(~)(
max100=1,









∆
∆−∆

⋅∞
i

ii

i xy
xyxyE  













∆
∆−∆

⋅∞ )(
)(~)(

max100= 2

22

2,
i

ii

i xy
xyxy

E  

where )( ixy  denotes the closed-form solution, )(~
ixy  is an approximation of the 

true solution by the method under study, )()(=)( xxyxyxy iii ∆−−∆  and 

1= −−∆ ii xxx  are the first difference of y  and x  respectively, )(2
ixy∆  is the 

second difference of y , i.e. )()(=)( 1
2

−∆−∆∆ iii xyxyxy . The criterion ∞0,E  is the 
maximal relative error made using an approximation rather than the true solution. 
The criteria ∞1,E  and ∞2,E  capture the accuracy of characteristics of the shape of an 
approximate policy function, namely the slope and convexity, by comparing the 
maximal relative first and second differences of the approximate and closed-form 
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solutions. All criteria are evaluated over the interval ],[ xxi xxx σσ ⋅∆+⋅∆−∈ , 
where xσ  is the unconditional volatility of process tx  and .5=∆  The 
parameterisation follows Collard and Juillard (2001) where the benchmark 
parameterisation is chosen as in Mehra and Prescott (1985). We therefore set the 
mean of the rate of growth of dividend to ,0.0179=x  its persistence to  
ρ  = –0.139, and the volatility of innovations to σ  = 0.0348. The parameter θ  was 
set to 1.5−  and β  to .0.95  We investigate the implications of larger curvature of 
the utility function, higher volatility and more persistence in the rate of growth of 
dividends in terms of accuracy. 

Table 1 shows that the maximal relative error for the benchmark parameterisation is 
three times larger for the approximation of the Taylor series expansion than for the 
semi-global method; however, the errors for both these methods are very small – 
0.06%  and 0.02%  respectively. The increase in the conditional volatility of the rate 
of growth of dividends to 0.1=σ  yields higher approximation errors of 2%  and 
1%  for the local Taylor series expansion and semi-global method respectively. 
Increasing the curvature of the utility function to 10= −θ  yields the maximal 
approximation error of 8.4%  for the Taylor series expansion approximation and 
about two times smaller one for the semi-global method. 

Table 1 
Relative errors of approximate solutions 
(%) 

Criterion  
∞0,E  ∞1,E  ∞2,E  

Model  SGa P2b SG P2 SG P2 

Parameterisation  

Benchmark   0.02 0.06 0.02 1.47 0.02 4.53 

10=  −θ  4.75 8.39 4.66 25.0 4.56 37.6 

0.1=  σ  1.30 2.23 1.29 12.0 1.28 19.3 

0.03= 5,0.=  σρ  0.26 1.56 0.28 8.72 0.30 26.6 

5= 5,0.=  −θρ  10.3 27.8 11.0 69.4 11.6 71.3 

0.9=  ρ  9.30 193 11.3 392 12.8 360 

a The semi-global method of order two;  
b the local Taylor series perturbation method of order two (Schmitt-Grohé and Uribe (2004)). 

The semi-global method becomes considerably more accurate than the local Taylor 
series expansion if the persistence of the exogenous process increases. For 
parameterisation 0.5=ρ  and 0.03=σ , the proposed method gives the maximal 
relative approximation error 6 times smaller than for the local Taylor series 
expansion. Increasing the persistence to 0.9=ρ  yields the maximal relative 
approximation error of 193% for the local Taylor series expansion and 9%  for the 
semi-global method. This effect is more pronounced for the criteria ∞1,E  and ∞2,E . 
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Furthermore, for any parameterisation the semi-global approximation gives at least 5 
times more accurate solution in the metrics ∞1,E  and 9 times in the metrics ∞2,E  than 
the local Taylor series expansion. 

Figure 1 
Comparison of policy functions for 0.9=ρ  

 

Figure 1 shows the policy functions for a high persistence case, ,0.9=ρ  and 
indicates that the semi-global method traces globally the pattern of the true policy 
function much better than the local Taylor series expansion. Moreover, from Figure 
1 we can also see another undesirable property of the the local Taylor series 
expansion, namely this method can provide impulse response functions with a 
wrong sign. Indeed, the steady state value of ty  is .12.3=y  After a positive shock, 
the true impulse response function is negative, whereas the impulse response 
function implied by the local perturbation method is positive, if the shock is large 
enough. Note also that the solution produced by the semi-global method is 
indistinguishable from the true solution for positive shocks (the bottom right corner 
of Figure 1). 
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CONCLUSIONS 

This study proposes a method based on perturbation around a deterministic path for 
constructing approximate solutions to DSGE models. The solutions obtained are 
global in the state space whenever so is the deterministic solution. As by product, an 
approach to solve linear rational expectations models with deterministic time-
varying parameters is developed. All results are obtained for DSGE models in 
general form and proved rigorously. 

The advantage of using the local perturbation methods lies in the fact that they can 
deal with medium-size and large-size models for reasonable computational time. 
However, these methods are intrinsically local as they employ perturbations around 
the steady state. Whereas the global methods used in DSGE modeling, such as 
projection and stochastic simulations, suffer from the curse of dimensionality, i.e. 
they can handle only small-dimension models. The proposed approach has a 
potential to solve high-dimensional models, as it shares some preferable properties 
with the local perturbation methods. Namely, the computational gain may come 
from calculation of conditional expectations. 

To compute conditional expectations using the semi-global method, all that we need 
is to know the moments of distribution up to the order of approximation, while the 
use of the global methods mentioned above involves either stochastic simulations or 
quadratures. The former is time consuming, the latter can deal with only low-order 
integrals.  

The approach is applicable to Markov-switching DSGE models in the form proposed 
by Foerster et al. (2013), where the vector of Markov-switching parameters that 
would influence the steady state is scaled by a small factor. Actually, under the 
conditions of "smallness" of a scaling parameter and existence of higher order 
moments for stochastic terms, all derivations of Section 3 hold irrespective of 
probability distribution functions for these stochastic terms. 
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APPENDICES 

Appendix A  
Proofs for Section 5 

PROOF OF PROPOSITION 5.1. The proof is by induction on .i  Suppose that 
0=i . For time T  from (35) we obtain  

.= 112,121,11 +++++ Ψ++ TTTTTTTTT EsQuBuE η  

As 1+TB  is invertible, we get  

1
1

,,,0,, = +
−+−− TTTTTTTTTTT uELgsKu  

where 121,
1
1, = +

−
+ TTTT QBK , 112,

1
1,0 = ++

−
+ Ψ− TTTTT EBg η , and 1

1
1

1, = −
+

−
+ TTT BL . From (36), 

(37) and (39) it follows that the inductive assumption is proved for 0=i . Assuming 
that (38) holds for 0>i , we will prove it for i + 1. To this end, consider equation 
(35) for time 1= −− iTt . As the matrix iTB −  is invertible, we obtain  

.= ,1
1

12,
1

121,
1

1, iTTiTiTiTiTiTiTiTiTiTiTT uEBEBsQBu −−−
−
−−−−−

−
−−−−

−
−−− +Ψ−− η  

Substituting the induction assumption (38) for iTTu −,  yields  

( ) .

=

1
1
,

1

1=
,,1

1

12,
1

121,
1

1,

















++−+

Ψ−−

+−
−

+−

+

−−−−
−
−

−−−−
−
−−−−

−
−−−

∏ TiTkiTT

i

k
iTiTiTTiTiT

iTiTiTiTiTiTiTiTT

uELgsKEB

EBsQBu η
 

Substituting (34) for )(1 iTiT sE −−−  and using the law of iterated expectations gives  

( )

( )[ ]iTiTiTiTTiTiTiTiTTiT

TiTkiTT

i

k
iT

iTiTiTiTiTiTiTiTiTiTT

EuQsAKB

uELB

gBEBsQBu

−−−−−−−−−−−
−
−

+−−
−

+−

+
−
−

−
−−−−−

−
−−−−

−
−−−

Ψ++−+









+

+Ψ−−

∏
η

η

11,1,12,1,
1

11
1
,

1

1=

1

,
1

12,
1

121,
1

1, =

.

 

Collecting the terms with 1, −−iTTu , 1−−iTs  and iT −η , we get  

( )
( )])(

)[(=

11
1
,

1

1=
,11,,2,

1,21,
1

1,12,,
1

+−−
−

+−

+

−−−−−−

−−−−−
−
−−−−−

−
−









++Ψ+Ψ+

+−+

∏ TiTkiTT

i

k
iTiTiTiTiTTiT

iTiTiTTiTiTiTTiTiTTiT

uELgEK

sAKQBuQKBI

η .
 

Suppose for the moment that the matrix iTiTTiTiTT QKBIZ −−
−
−− + 12,,
1

, =  is invertible. 

Pre-multiplying the last equation by 1
,
−

−iTTZ , we obtain  
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( )].

)(
)[(=

11
1
,

1

1=

,11,,2,

1,21,
11

,1,

+−−
−

+−

+
−−−−−−

−−−−−
−
−

−
−−−









+

+Ψ+Ψ+
+−

∏ TiTkiTT

i

k

iTiTiTiTiTTiT

iTiTiTTiTiTiTTiTT

uEL

gEK
sAKQBZu

η  

Note that iTTiTiTT ZBL −−− ,, = ; then using the definition of 1, −−iTTK  (36), we see that  

( )
( )11

1
,

1

1=

1
,,

1
,

11,,2,
1
,

11,1, =

+−−
−

+−

+
−

−
−

−

−−−−−−
−

−

−−−−−−









++

Ψ+Ψ−
−

∏ TiTkiTT

i

k
iTTiTiTT

iTiTiTiTTiTiTT

iTiTTiTT

uELLgL

EKL
sKu

η  (70). 

Using the definition of iTg ,  and jiTiTL +−− ,  ((37) and (39)), we deduce that  

( ) iTiTTiTiTiTiTTiTiTTiT gLEKLg ,
1
,11,,2,

1
,1, = −

−−−−−−−
−

−+ +Ψ+Ψ− η  (71). 

From (70) and (71) it follows that  

( ).= 11
1

1,

2

1=
1,11,1, +−−

−
+−−

+

+−−−−−− 







++− ∏ TiTkiTT

i

k
iTiTiTTiTT uELgsKu  

This proves the proposition. 

PROOF OF PROPOSITION 5.2. We begin by rewriting (36) as  

( ) ( ).= ,21,1)(,12,, iTiTTiTiTTiTiTTiT AKQKQKB −−−+−−−− ++  

Rearranging terms, we obtain  

( )
1)(,12,,

1
,21,

1
1)(, =

+−−−
−
−

−−−
−
−+−

−
+⋅

iTTiTiTTiT

iTiTTiTiTiTT

KQKB
AKQBK

 (72). 

Taking the norms and using norm properties gives  

 
.1)(,12,,

1
,

1
21,

1
1)(, +−−−

−
−−−

−
−−

−
−+− ⋅⋅⋅+⋅⋅+⋅≤ iTTiTiTTiTiTiTTiTiTiTiTT KQKBAKBQBK

 

Rearranging terms, we get  

iTiTTiT

iTiTTiTiTiT
iTT QKB

AKBQB
K

−−
−
−

−−
−
−−

−
−

+−
⋅⋅−

⋅⋅+⋅
≤

12,,
1

,
1

21,
1

1)(, 1
 (73). 
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Inequality (73) is a difference inequality with respect to iTTK −, , , , 1, 0,= Ti   

having time-varying coefficients iTA − , 1−
−iTB , iTQ −12,  and iTQ −21, . In (73) we 

assume that 

.01 12,,
1 ≠⋅⋅− −−
−
− iTiTTiT QKB  

This is obviously true, if .0=, iTTK −  We shall show that, if the initial condition 

0=1, +TTK , ( ) 0>1 12,,
1

iTiTTiT QKB −−
−
− ⋅⋅− , . , 2, 1,= Ti   Indeed, consider the 

difference equation:  

( )i

i
i bcs

basbd
s

−
+

+ 1
=1   (74). 

Lemma 8.1  

If inequality (40) holds, then the difference equation (74) has two fixed points:  

cdbbaba
bds

22

*
1

4)(11

2=
−−+−

  (75), 

bc
cdbbaba

s
2

4)(11
=

22
*
2

−−+−
 

where *
1s  is a stable fixed point, whereas *

2s  is an unstable one. Moreover, under the 
initial condition 0=0s , the solution , 2, 1,=, isi  is an increasing sequence and 

converges to *
1s .  

Proof. The lemma can be proved by direct calculation.  

From (31)–(30), the values a, b, c and d majorise iTA −  , 1−
−iTB , iTQ −12,  and 

iTQ −21,  respectively. If we consider equation (71) and inequality (74) as initial 

value problems with the initial conditions 0=1, +TTK  and 0=0s , their solutions 

obviously satisfy inequality 1, +− ≤ iiTT sK , Ti  , 2, 1,=  . In other words, iTTK −,  

is majorised by is . From the last inequality and Lemma 8.1, it may be concluded 
that  

N∈≤− TisK iTT T, , 2, 1, 0,=,*
1,    (76). 

From (75), (76) and (31) it follows that  

cdbbaba
dcbQKB iTiTTiT 22

2

12,,
1

4)(11
2

−−+−
≤⋅⋅ −−

−
−  (77). 
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From inequality (40) we see that /2)(1<2 22 abdcb − . Substituting this inequality 
into (77) gives  

( )

( ) 1<
2

1=
)2(1

1<

)4)(12(1
1

2

22

2

12,,
1

ba
ba

ba
cdbbaba

baQKB iTiTTiT

−
−
−

−−+−

−
≤⋅⋅ −−

−
−

 (78) 

where the last inequality follows from (33). This proves Proposition 2. 

PROOF OF PROPOSITION 5.4. The assertion of the proposition is true, if there 
exist constants M  and r  such that 1<<0 r  and for N∈T   

.0,1,2,=,1
1,, jMrKK T

jTjT
+

+ ≤−   (79). 

Note now that jTK ,  ( jTK 1,+ ) is a solution to matrix difference equation (36) at 

jTi −=  ( jTi −+1= ) with the initial condition 0=1, +TTK  ( ).0=21, ++ TTK  

Subtracting (72) for 1)(, +− iTTK  from that for 1)(1, +−+ iTTK , we have  

.
)(=

1)(1,12,1,
1

1)(,12,),
1

1,),
1

1)(1,1)(,

+−+−−+
−
−+−−−

−
−

−−+−
−
−+−++−

+−
−−

iTTiTiTTiTiTTiTiTTiT

iTiTTiTTiTiTTiTT

KQKBKQKB
AKKBKK

 

Adding and subtracting 1)(1,12,,
1

+−+−−
−
− ⋅⋅⋅ iTTiTiTTiT KQKB  in the right-hand side gives  

.)(
)(

)(=

1)(1,12,1,,
1

1)(1,1)(,12,,
1

1,),
1

1)(1,1)(,

+−+−−+−
−
−

+−++−−−
−
−

−−+−
−
−+−++−

⋅−−
−⋅⋅−

−−

iTTiTiTTiTTiT

iTTiTTiTiTTiT

iTiTTiTTiTiTTiTT

KQKKB
KKQKB

AKKBKK
 

Rearranging the terms yields  

.)(
)(=

)((

1)(1,12,1,,
1

1,,
1

1)(1,1)(,12,,
1

+−+−−+−
−
−

−−+−
−
−

+−++−−−
−
−

−−
−

−+

iTTiTiTTiTTiT

iTiTTiTTiT

iTTiTTiTiTTiT

KQKKB
AKKB

KKQKBI
 

From proposition 5.3 it follows that the matrix  

)(= 12,,
1

, iTiTTiTiTT QKBIZ −−
−
−− +  

is invertible, then pre-multiplying the last equation by this matrix yields  

).)(
)((=

1)(1,12,1,),
1

1,,
11

,1)(1,1)(,

+−+−−+−
−
−

−−+−
−
−

−
−+−++−

−−
−−

iTTiTiTTiTTiT

iTiTTiTTiTiTTiTTiTT

KQKKB
AKKBZKK
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Taking the norms, using the norm property and the triangle inequality, we get  

)

(

1)(1,12,1,),
1

1,,
11

,1)(1,1)(,

+−+−−+−
−
−

−−+−
−
−

−
−+−++−

⋅⋅−⋅+

⋅−⋅⋅≤−

iTTiTiTTiTTiT

iTiTTiTTiTiTTiTTiTT

KQKKB

AKKBZKK
(80) 

From (30) and (78), we have  

iTTiTTiTT

iTTiTTiTTiTTiTT

KKZba

KKZbaabKK

−+−
−

−

−+−
−

−+−++−

−⋅
+

−⋅





 −

+≤−

1,,
1
,

1,,
1
,1)(1,1)(,

2
1=

2
1

 (81). 

From the norm property and Golub and Van Loan (1996, Lemma 2.3.3), we get the 
estimate  

 

iTiTTiTiTiTTiT
iTiTTiTiTT QKBQKB

QKBIZ
−−

−
−−−

−
−

−
−−

−
−

−
−

⋅⋅−
≤

−
≤+

12,,
1

12,,
1

1
12,,

11
, 1

1
1

1)(=

By inequality (78), we have  

babaZ iTT +−
−

≤−
− 1

2=

2
11

11
, . 

Substituting the last inequality into (81) gives  

iTTiTTiTTiTT KKKK −+−+−++− −− 1,,1)(1,1)(, <  (82). 

Using (85) successively for 1 , 1, 0, 1,= −− Ti   and taking into account 0=1, +TTK  

and 221,
1

211, = +
−
+++ TTTT QBK  results in  

0,1,2,=,

=<

221,221,
1

2

221,
1

211,1,1,,

jQbQB

QBKKKK

TTT

TTTTTTjTjT

++
−
+

+
−
+++++

≤⋅≤

−−

 (83). 

Recall that TQ21,  depends on the solution to the deterministic problem (14), i.e. 

( )(0)(0)
1

(0)(0)
12121, ,,,= TTTTT zzxxQQ ++ . From Hartmann (1982, Corollary 5.1) and 

differentiability of 21Q  with respect to state variables it follows that  

T
T CQ )(21, θα +≤   (84) 

where α  is the largest eigenvalue modulus of the matrix A  from (23), C  is some 
constant and θ  is an arbitrary small positive number. In fact, θα +  determines the 
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speed of convergence for the deterministic solution to the steady state. Inserting (84) 
into (85), we can conclude  

 2, 1, 0,=,)(< 2
1,, jbCKK T

jTjT
+

+ +− θα  (85). 

Denoting )(= θα +bCM  and θα +=r , we finally obtain (79). This proves the 
proposition. 

Appendix B 
Series expansion for Burnside's model 

Substituting (56) and (57) into (53) yields  

( ) ( ) ( )
( )[ ] ( ) ( )

( ) .]}
[1exp{=

(1)
1

(0)
1

(2)2

(1)(0)(1)(1)
1

(0)
1

(0)(1)
1

(0)
1

(1)(0)(2)2(1)(0)(1)(1)(0)(0)





+++
++++⋅+

++++++

++

++++

tt

ttttttt

tttttt

xxy
xxyxxyxxE

xxyxxyxxy

σσ
σσσσθβ

σσσσσ
 

Expanding ty  for small σ  up to order two gives  

( )
( )

( ) .]
2
1

[1
2
11)(exp=

2
1

(2)
1

2(1)
1

(1)
11,

2(1)
1

2(1)
1

(0)
12,

2

(1)
1

(0)
11,

(0)
1

2(1)
1

(1)
1

(0)
1

(2)2(1)(1)
1,

2(0)(1)2(1)(0)
2,

2(1)(0)
1,

(0)







+++++

++



 +++

++++++

++++++

++++++

tttttt

ttttttt

ttttttttt

yxyyxy

xyyxxxE

yxyxyxyxyy

σσσσ

σσθσθθβ

σσσσσ

 

Collecting the terms of like powers of σ  of the last equation, we obtain  

[ ] ( )
( ) [ ]

( )
( ) .}]

2
1)(1)(

2
1[

)(1){(1exp=
2
1(

(1)
1

(1)
1

2(1)
1

(0)
11,

2(1)
1

(0)
12,

(1)
1

(1)
11,

(1)
1

(1)
1

(2)
1

(0)
1

2(1)
1

2

(1)
1

(1)
1

(0)
11,

(0)
1

(1)
1

(0)
1

(0)
1

2(1)(0)
2,

(1)(1)
2,

(2)2(0)(1)(1)(0)
1,

(0)





+++

++++++

+++++

+



 +++++

++++

+++++++++

+++++++

tttt

ttttttttt

tttttttt

tttttttt

yxxy

xyxyxyyyx

yxyyxyEx

xyxyyxyxyy

θθ

θσ

θσθβ

σσ
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